








stochastic effects, and are therefore expected to be useful
beyond the activity-driven model (or the clique-based
temporal networks analyzed in the Supplemental
Material [32]) and the SIS model.

We thank Leo Speidel for discussion. We thank the
SocioPatterns collaboration (http:// www.sociopatterns.org)
for providing the data set. T. O. acknowledges the support
provided through JSPS Research Fellowship for Young
Scientists. J. G. acknowledges the support provided
through Science Foundation Ireland (Grants No. 15/SPP/
E3125 and No. 11/PI/1026). N. M. acknowledges the
support provided through JST, CREST, and JST,
ERATO, Kawarabayashi Large Graph Project.

*naoki.masuda@bristol.ac.uk
[1] P. Holme and J. Saramäki, Phys. Rep. 519, 97 (2012).
[2] P. Holme, Eur. Phys. J. B 88, 234 (2015).
[3] N. Masuda and R. Lambiotte, A Guide to Temporal

Networks (World Scientific, Singapore, 2016).
[4] M. J. Keeling and K. T. D. Eames, J. R. Soc. Interface 2, 295

(2005).
[5] A. Barrat, M. Barthélemy, and A. Vespignani, Dynamical

Processes on Complex Networks (Cambridge University
Press, Cambridge, England, 2008).

[6] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A.
Vespignani, Rev. Mod. Phys. 87, 925 (2015).

[7] M. A. Porter and J. P. Gleeson, Dynamical Systems on
Networks, Frontiers in Applied Dynamical Systems:
Reviews and Tutorials (Springer International Publishing,
Cham, Switzerland, 2016), Vol. 4.

[8] S. Bansal, J. Read, B. Pourbohloul, and L. A. Meyers, J.
Biol. Dyn. 4, 478 (2010).

[9] N. Masuda and P. Holme, F1000Prime Rep. 5, 6 (2013).
[10] M. Morris and M. Kretzschmar, Soc. Networks 17, 299

(1995).
[11] M. Kretzschmar and M. Morris, Math. Biosci. 133, 165

(1996).
[12] J. C. Miller and A. C. Slim, arXiv:1611.04800.
[13] C. H. Watts and R. M. May, Math. Biosci. 108, 89 (1992).
[14] I. A. Doherty, S. Shiboski, J. M. Ellen, A. A. Adimora, and

N. S. Padian, Sex. Transm. Dis. 33, 368 (2006).
[15] K. Gurski and K. Hoffman, Math. Biosci. 282, 91 (2016).
[16] K. T. D. Eames and M. J. Keeling, Math. Biosci. 189, 115

(2004).
[17] C. Bauch and D. A. Rand, Proc. R. Soc. B 267, 2019 (2000).
[18] K. Y. Leung and M. Kretzschmar, AIDS 29, 1097 (2015).
[19] N. Perra, B. Gonçalves, R. Pastor-Satorras, and A.

Vespignani, Sci. Rep. 2, 469 (2012).
[20] M. Starnini and R. Pastor-Satorras, Phys. Rev. E 87, 062807

(2013).
[21] B. Ribeiro, N. Perra, and A. Baronchelli, Sci. Rep. 3, 3006

(2013).
[22] S. Liu, N. Perra, M. Karsai, and A. Vespignani, Phys. Rev.

Lett. 112, 118702 (2014).

[23] L. Zino, A. Rizzo, and M. Porfiri, Phys. Rev. Lett. 117,
228302 (2016).

[24] A. Vazquez, B. Rácz, A. Lukács, and A. L. Barabási, Phys.
Rev. Lett. 98, 158702 (2007).

[25] M. Karsai, M. Kivelä, R. K. Pan, K. Kaski, J. Kertész, A. L.
Barabási, and J. Saramäki, Phys. Rev. E 83, 025102(R)
(2011).

[26] G. Miritello, E. Moro, and R. Lara, Phys. Rev. E 83, 045102
(R) (2011).

[27] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, V. Colizza, L.
Isella, C. Régis, J. F. Pinton, N. Khanafer, W. Van den
Broeck, and P. Vanhems, BMC Med. 9, 87 (2011).

[28] D. Liberzon, Switching in Systems and Control, Systems
and Control: Foundations and Applications (Birkhäuser,
Boston, 2003).

[29] N. Masuda, K. Klemm, and V. M. Eguíluz, Phys. Rev. Lett.
111, 188701 (2013).

[30] M. Hasler, V. Belykh, and I. Belykh, SIAM J. Appl. Dyn.
Syst. 12, 1007 (2013).

[31] L. Speidel, K. Klemm, V. M. Eguíluz, and N. Masuda,
New J. Phys. 18, 073013 (2016).

[32] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.119.108301, which in-
cludes Refs. [33,34], for details of mathematical derivations
and extensions of the model.

[33] M. Génois, C. L. Vestergaard, J. Fournet, A. Panisson, I.
Bonmarin, and A. Barrat, Netw. Sci. 3, 326 (2015).

[34] A. Paranjape, A. R. Benson, and J. Leskovec, in Proceed-
ings of the Tenth ACM International Conference on Web
Search and Data Mining, WSDM’17 (ACM, New York,
2017), pp. 601–610.

[35] H. Silk, G. Demirel, M. Homer, and T. Gross, New J. Phys.
16, 093051 (2014).

[36] M.M. de Oliveira and R. Dickman, Phys. Rev. E 71, 016129
(2005).

[37] M. Karsai, N. Perra, and A. Vespignani, Sci. Rep. 4, 4001
(2014).

[38] M. J. Keeling and J. V. Ross, J. R. Soc. Interface 5, 171
(2008).

[39] P. L. Simon, M. Taylor, and I. Z. Kiss, J. Math. Biol. 62, 479
(2011).

[40] J. Hindes and I. B. Schwartz, Phys. Rev. Lett. 117, 028302
(2016).

[41] C. Tantipathananandh, T. Berger-Wolf, and D. Kempe, in
Proceedings of the Thirteenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(ACM, New York, 2007), pp. 717–726.

[42] J. Stehlé, A. Barrat, and G. Bianconi, Phys. Rev. E 81,
035101(R) (2010).

[43] K. Zhao, M. Karsai, and G. Bianconi, PLoS One 6, e28116
(2011).

[44] J. W. Eaton, T. B. Hallett, and G. P. Garnett, AIDS Behav.
15, 687 (2011).

[45] E. Valdano, L. Ferreri, C. Poletto, and V. Colizza, Phys. Rev.
X 5, 021005 (2015).

[46] L. E. C. Rocha and N. Masuda, Sci. Rep. 6, 31456
(2016).

PRL 119, 108301 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

8 SEPTEMBER 2017

108301-5

http:// www.sociopatterns.org
http:// www.sociopatterns.org
http:// www.sociopatterns.org
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1140/epjb/e2015-60657-4
https://doi.org/10.1098/rsif.2005.0051
https://doi.org/10.1098/rsif.2005.0051
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1080/17513758.2010.503376
https://doi.org/10.1080/17513758.2010.503376
https://doi.org/10.12703/P5-6
https://doi.org/10.1016/0378-8733(95)00268-S
https://doi.org/10.1016/0378-8733(95)00268-S
https://doi.org/10.1016/0025-5564(95)00093-3
https://doi.org/10.1016/0025-5564(95)00093-3
http://arXiv.org/abs/1611.04800
https://doi.org/10.1016/0025-5564(92)90006-I
https://doi.org/10.1097/01.olq.0000194586.66409.7a
https://doi.org/10.1016/j.mbs.2016.09.009
https://doi.org/10.1016/j.mbs.2004.02.003
https://doi.org/10.1016/j.mbs.2004.02.003
https://doi.org/10.1098/rspb.2000.1244
https://doi.org/10.1097/QAD.0000000000000676
https://doi.org/10.1038/srep00469
https://doi.org/10.1103/PhysRevE.87.062807
https://doi.org/10.1103/PhysRevE.87.062807
https://doi.org/10.1038/srep03006
https://doi.org/10.1038/srep03006
https://doi.org/10.1103/PhysRevLett.112.118702
https://doi.org/10.1103/PhysRevLett.112.118702
https://doi.org/10.1103/PhysRevLett.117.228302
https://doi.org/10.1103/PhysRevLett.117.228302
https://doi.org/10.1103/PhysRevLett.98.158702
https://doi.org/10.1103/PhysRevLett.98.158702
https://doi.org/10.1103/PhysRevE.83.025102
https://doi.org/10.1103/PhysRevE.83.025102
https://doi.org/10.1103/PhysRevE.83.045102
https://doi.org/10.1103/PhysRevE.83.045102
https://doi.org/10.1186/1741-7015-9-87
https://doi.org/10.1103/PhysRevLett.111.188701
https://doi.org/10.1103/PhysRevLett.111.188701
https://doi.org/10.1137/120893409
https://doi.org/10.1137/120893409
https://doi.org/10.1088/1367-2630/18/7/073013
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.108301
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.108301
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.108301
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.108301
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.108301
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.108301
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.108301
https://doi.org/10.1017/nws.2015.10
https://doi.org/10.1088/1367-2630/16/9/093051
https://doi.org/10.1088/1367-2630/16/9/093051
https://doi.org/10.1103/PhysRevE.71.016129
https://doi.org/10.1103/PhysRevE.71.016129
https://doi.org/10.1038/srep04001
https://doi.org/10.1038/srep04001
https://doi.org/10.1098/rsif.2007.1106
https://doi.org/10.1098/rsif.2007.1106
https://doi.org/10.1007/s00285-010-0344-x
https://doi.org/10.1007/s00285-010-0344-x
https://doi.org/10.1103/PhysRevLett.117.028302
https://doi.org/10.1103/PhysRevLett.117.028302
https://doi.org/10.1103/PhysRevE.81.035101
https://doi.org/10.1103/PhysRevE.81.035101
https://doi.org/10.1371/journal.pone.0028116
https://doi.org/10.1371/journal.pone.0028116
https://doi.org/10.1007/s10461-010-9787-8
https://doi.org/10.1007/s10461-010-9787-8
https://doi.org/10.1103/PhysRevX.5.021005
https://doi.org/10.1103/PhysRevX.5.021005
https://doi.org/10.1038/srep31456
https://doi.org/10.1038/srep31456


Supplemental Material for “Concurrency-induced transitions in epidemic dynamics on
temporal networks”

PREVALENCE ON THE AGGREGATE
NETWORK
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FIG. S1. Prevalence on the aggregate (hence static) network
whose adjacency matrix is given (in the limit N → ∞) by
A∗

ij = m(ai + aj)/N [1, 2]. The lines represent the numerical
results for the delta function (i.e., all nodes have same activity
potential) and power-law activity distributions. The arrows

indicate βc =
[
m
(
〈a〉+

√
〈a2〉

)]−1

. We set m = 5 and

〈a〉 = 0.01.

WHEN THE LOW-ACTIVITY ASSUMPTION IS
VIOLATED

Here we consider the situation in which the low-
activity assumption m2〈a〉 � 1 is violated. When
m� N , the expected number of star graphs that a star
graph overlaps with is given by

p = N〈a〉
[
1−

(
1− m+ 1

N − 1

)m]
≈ m(m+ 1)〈a〉. (S1)

If p � 1 is violated, a star graph would overlap with
others such that the actual concurrency is larger than
m. In the extreme case of p ≥ 1, almost all star graphs
overlap with each other such that the concurrency is not
sensitive to m. In this situation, our results overestimate
the epidemic threshold because our analysis does not take
into account infections across different star graphs. If
p ≥ 1, the individual-based approximation describes the
numerical results more accurately than our method does
(Figs. S2(c) and S2(d)). However, even at a moderately
large value of p (= 0.5), our method is more accurate
than the individual-based approximation (Figs. S2 (a)
and S2(b)).
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FIG. S2. Epidemic threshold and numerically calculated
prevalence when the low-activity assumption is violated. We
set m = 1 in (a) and (c), m = 10 in (b) and (d), p = 0.5 in
(a) and (b), and p = 1.5 in (c) and (d). The solid and dashed
lines represent the epidemic threshold obtained from Eq. (8)
and that obtained from the individual-based approximation,
respectively. All nodes are assumed to have the same activity
potential a = 0.25 in (a), a = 0.0045 in (b), a = 0.75 in (c),
and a = 0.0136 in (d). We calculated the prevalence averaged
over 100 simulations after discarding the first 15000 time steps
of each simulation. We set N = 1000 and ∆t = 0.002.

DERIVATION OF c1, c2, c3, c4, AND c5

We consider SIS dynamics on a star graph with m
leaves and derive c1, c2, c3, c4, and c5. Let us denote
the state of the star graph by {x, y, z} (x, y ∈ {S, I}, 0 ≤
z ≤ m− 1), where x and y are the states of the hub and
a specific leaf node, respectively, and z is the number of
infected nodes in the other m − 1 leaf nodes. Although
a general network with m+ 1 nodes allows 2m+1 states,
using this notation, we can describe SIS dynamics on a
star graph by a continuous-time Markov process with 4m
states [3].

We denote the transition rate matrix of the Markov
process by M . Its element M{x′,y′,z′},{x,y,z} is equal to
the rate of transition from {x, y, z} to {x′, y′, z′}. The
diagonal elements are given by

M{x,y,z},{x,y,z} = −
∑

{x′,y′,z′}6={x,y,z}

M{x′,y′,z′},{x,y,z}.

(S2)
The rates of the recovery events are given by

M{S,y,z},{I,y,z} =1, (S3)

M{x,S,z},{x,I,z} =1, (S4)

M{x,y,z−1},{x,y,z} =z (z ≥ 1). (S5)



2

The rates of the infection events are given by

M{I,S,z},{S,S,z} = zβ, (S6)

M{I,I,z},{S,I,z} = (z + 1)β, (S7)

M{I,I,z},{I,S,z} = β, (S8)

M{I,y,z+1},{I,y,z} =(m− 1− z)β (z ≤ m− 2). (S9)

The other elements of M are equal to 0. Let p{x,y,z}(t)
be the probability for a star graph to be in state {x, y, z}
at time t. Because

ṗ(t) = Mp(t), (S10)

where p(t) is the 4m-dimensional column vector whose
elements are p{x,y,z}(t), we obtain

p(t) = exp(M t)p(0). (S11)

Note that c1 and c2 are the probabilities with which x = I
at time τ , when the initial state is {I, S, 0} and {S, I, 0},
respectively, and that c3, c4, and c5 are the probabilities
that y = I at time τ , when the initial state is {S, I, 0},
{I, S, 0}, and {S, S, 1}, respectively. Therefore, we ob-
tain

c1
c2
c3
c4
c5

 =



∑
y,z [exp(Mτ)]{I,y,z},{I,S,0}∑
y,z [exp(Mτ)]{I,y,z},{S,I,0}∑
x,z [exp(Mτ)]{x,I,z},{S,I,0}∑
x,z [exp(Mτ)]{x,I,z},{I,S,0}∑
x,z [exp(Mτ)]{x,I,z},{S,S,1}

 . (S12)

When m = 1, Eq. (S12) yields

c1 = c3 =

e−τ

2

[
e−βτ + e−

1+β
2 τ

(
cosh

κτ

2
+

1 + 3β

κ
sinh

κτ

2

)]
,

(S13)

c2 = c4 =

e−τ

2

[
−e−βτ + e−

1+β
2 τ

(
cosh

κτ

2
+

1 + 3β

κ
sinh

κτ

2

)]
,

(S14)

where κ =
√
β2 + 6β + 1, and c5 is not defined.

When m � 1, we can apply an individual-based ap-
proximation [1, 4, 5]. We assume that the state of each
node is statistically independent of each other, i.e.,

p{x,y,z} ≈ P (x)P (y)P (z), (S15)

where P (x), for example, is the probability that the hub
takes state x. We have suppressed t in Eq. (S15). Un-
der the individual-based approximation, x and y obey
Bernoulli distributions with parameters pMF

1 and pMF
2 ,

respectively, and z obeys a binomial distribution with pa-
rameters m−1 and pMF

3 , where pMF ≡ (pMF
1 , pMF

2 , pMF
3 )>

is given by

pMF =

P (x = I)
P (y = I)
〈z〉
m−1

 =


∑
y,z p{I,y,z}∑
x,z p{x,I,z}

1
m−1

∑
x,y,z zp{x,y,z}

 .

(S16)

By substituting Eq. (S10) in the time derivative of
Eq. (S16), we obtain

ṗMF =

−pMF
1 + βpMF

2 + (m− 1)βpMF
3

βpMF
1 − pMF

2

βpMF
1 (1− pMF

3 )− pMF
3

 . (S17)

If pMF
3 � 1, pMF obeys linear dynamics given by

ṗMF ≈MMFpMF (S18)

where

MMF =

−1 β (m− 1)β
β −1 0
β 0 −1

 . (S19)

In a similar fashion to the derivation of Eq. (S12), we
obtain 

c1
c2
c3
c4
c5

 ≈


[exp(MMFτ)]11
[exp(MMFτ)]12
[exp(MMFτ)]22
[exp(MMFτ)]21
1

m−1 [exp(MMFτ)]23



= e−τ


cosh(β

√
mτ)

1√
m

sinh(β
√
mτ)

1 + cosh(β
√
mτ)−1

m
1√
m

sinh(β
√
mτ)

1
m (cosh(β

√
mτ)− 1)

 . (S20)

We estimate the extent to which Eq. (S20) is valid
as follows. First, we need m � 1, because the initial
condition pMF

3 = 1/(m − 1) should satisfy pMF
3 � 1.

Second, pMF
3 must satisfy

pMF
3 (τ) ≤ β(1− e−τ ) + pMF

3 (0)e−τ (S21)

because pMF
1 ≤ 1 in Eq. (S17). To satisfy pMF

3 � 1, we
need τ < 1/β. This condition remains unchanged by re-
scaling (τ, β) to (cτ, β/c). These two conditions are suf-
ficient for this approximation to be valid. If m� 1 is vi-
olated, the individual-based approximation significantly
underestimates the epidemic threshold for any finite τ
because it ignores the effect of stochastic dying-out. If
τ < 1/β is violated, the approximation (dashed lines in
Fig. 2 (b) and (d)) underestimates the epidemic thresh-
old because dynamics on the star graph deviate from the
linear regime. In particular, the epidemic threshold ob-
tained from the approximation (Eq. (S48)) remains finite
even in the limit τ → ∞, whereas analytical (Eq. (8))
and numerical (Fig. 2) results diverge at a finite τ .
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DERIVATION OF EQ. (8)

At the epidemic threshold, the largest eigenvalue of T
is equal to unity. Let v = (v1, v2, . . .)

> be the corre-
sponding eigenvector of T . We normalize v such that∑∞
j=1 vj = 1. By substituting Eq. (7) in v = Tv, we

obtain the system of equations

v1 = c′3v1 + c′4

∞∑
n=1

〈an〉vn + c′5

∞∑
n=1

〈an−1〉vn, (S22)

v2 = c′1v1 + c′3v2 + c2

∞∑
n=1

〈an−1〉vn, (S23)

vj = c′1vj−1 + c′3vj (j ≥ 3). (S24)

Equation (S24) gives

vj =
q

〈a〉
vj−1 (j ≥ 3), (S25)

where

q ≡ 〈a〉c
′
1

1− c′3
. (S26)

By combining Eqs. (S23) and (S25), we obtain

(q + r)v1 = 〈a〉 [1− (1 + qS)r] v2, (S27)

where

r ≡ 〈a〉c
′
2

1− c′3
, (S28)

S(q) ≡
∞∑
n=0

〈an+2〉
〈a〉n+2

qn =
1

〈a〉2

〈
a2

1− a
〈a〉q

〉
. (S29)

Because v is normalized, we obtain

v =



[〈a〉−q][1−(1+qS)r]
r+〈a〉+(1+qS)[q−〈a〉]r

[1− q
〈a〉 ](q+r)

r+〈a〉+(1+qS)[q−〈a〉]r
q

〈a〉 [1− q
〈a〉 ](q+r)

r+〈a〉+(1+qS)[q−〈a〉]r

( q
〈a〉 )

2
[1− q

〈a〉 ](q+r)
r+〈a〉+(1+qS)[q−〈a〉]r

...


. (S30)

Equation (S22) leads to

[1− s− u]v1 = 〈a〉 [sS + (1 + qS)u] v2, (S31)

where,

s ≡ 〈a〉c
′
4

1− c′3
, (S32)

u ≡ c′5
1− c′3

. (S33)

By substituting Eq. (S30) in Eq. (S31), we obtain

f(τ, βc) ≡
(1− r)(1− s)− (1 + q)u

S(q)

− qr − qs+ qrs− q2u− rs = 0, (S34)

which is Eq. (8) in the main text. If all nodes have the
same activity potential a, Eq. (S34) is reduced to

f(τ, βc) = 1− q − r − s− u = 0. (S35)

CONVERGENCE OF THE MACLAURIN SERIES

We derive the condition under which the Maclaurin se-
ries in Eq. (5) converges for any t when β ≤ βc. First, at
t = 0, the series converges because w(0) = (p0, 0, 0, ...)

>.
Second, consider a finite t. It should be noted that the

series is only defined at t that is a multiple of τ . Because
Tij = 0 (i ≥ j + 2) in Eq. (7), we obtain

wn(t) = 0 for n ≥ 1 +
t

τ
. (S36)

Therefore, the series converges.
Third, we consider the limit t→∞. If β < βc, because

lim
t→∞
〈ρ〉 = 0, (S37)

we obtain

lim
t→∞

wn(t) = 0 for n ≥ 1. (S38)

Therefore, the series converges. For β = βc, we consider
the convergence of the series when

lim
t→∞

w(t) = bv, (S39)

where v is the eigenvector of T given by Eq. (S30), and
b is a constant. Because Eq. (S30) yields

lim
j→∞

vj+1

vj
=

q

〈a〉
, (S40)

the radius of convergence is equal to 〈a〉/q. To ensure
convergence, we require that

max
i

(ai) <
〈a〉
q
. (S41)

Because ci (1 ≤ i ≤ 5) are probabilities, we obtain

c1 ≤ 1, (S42)

c3 ≤ 1. (S43)

By substituting Eqs. (S42) and (S43) in the definitions
of c′1 and c′2, we obtain

c′1 ≤ 1− e−τ , (S44)

c′3 ≤ e−τ +m〈a〉(1− e−τ ). (S45)
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By substituting Eqs. (S44) and (S45) in Eq. (S26), we
obtain

q ≤ 〈a〉
1−m〈a〉

. (S46)

Inequalities (S42)–(S46) hold with equality in the limit
β → ∞. Hence, a sufficient condition for convergence is
given by

max
i

(ai) < 1−m〈a〉. (S47)

Equation (S47) holds true in practical situations because
the assumption m2〈a〉 � 1 guarantees that m〈a〉 � 1
and ai is a probability.

EPIDEMIC THRESHOLD UNDER THE
INDIVIDUAL-BASED APPROXIMATION

When m� 1, the epidemic threshold can be obtained
by the individual-based approximation [1, 4, 5]. We as-
sume that all nodes have the same activity potential a.
By substituting Eq. (S20) in Eq. (S35), we obtain

βc ≈
1√
mτ

ln

(
1 +

eτ − 1

2
√
ma

)
. (S48)

Equation (S48) agrees with the value derived in [1]. Note
that this approximation is valid only for small τ (τ <
1/βc).

DERIVATION OF τ∗ FOR GENERAL ACTIVITY
DISTRIBUTIONS

In the limit β →∞, we obtain ci → 1 (1 ≤ i ≤ 5). For
general activity distributions, f(τ∗, βc → ∞) = 0 leads
to

τ∗ = − ln

(
1− b+

√
b2 + 4d

2

)
, (S49)

where

b = m〈a〉2 [1−m〈a〉]−3 [2− (m+ 1)〈a〉]S
(

〈a〉
1−m〈a〉

)
+ m〈a〉 [1−m〈a〉]−2

[
m+ 1− (m2 + 1)〈a〉

]
, (S50)

d = m2〈a〉2 [1−m〈a〉]−3 [1− (m+ 1)〈a〉]S
(

〈a〉
1−m〈a〉

)
− m2〈a〉2 [1−m〈a〉]−2 . (S51)

DERIVATION OF mc FOR GENERAL ACTIVITY
DISTRIBUTIONS

At m = mc, an infinitesimal increase in τ from 0 to ∆τ
does not change the βc value. For general activity distri-
butions, by setting ∂f/∂τ = 0 for f given by Eq. (S34),
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FIG. S3. Epidemic threshold and numerically calculated
prevalence for the activity-driven model with link dynamics
driven by a reinforcement process [6]. We set m = 1 in (a) and
(c), and m = 10 in (b) and (d). We used the original activity-
driven model in (a) and (b) and the extended model with
c = 1 in (c) and (d). The solid lines represent the epidemic
threshold obtained from Eq. (8). All nodes have ai = 0.05
(1 ≤ i ≤ N) in (a) and (c), and ai = 0.005 (1 ≤ i ≤ N) in
(b) and (d). We calculated the prevalence averaged over 100
simulations after discarding the first 15000 time steps in each
simulation. We set N = 2000 and ∆t = 0.002.

we obtain

mc =
1 + 2

√
〈a2〉
〈a〉

1− 2
√
〈a2〉 − 2 〈a

2〉
〈a〉

. (S52)

ACTIVITY-DRIVEN MODEL WITH A
REINFORCEMENT PROCESS

We carried out numerical simulations for an extended
activity-driven model in which link dynamics are driven
by a reinforcement process [6]. The original activity-
driven model is memoryless [7]. In the extended model,
an activated node i connects to a node j that i has al-
ready contacted with probability 1/(ni+c) and to a node
j that i has not contacted with probability c/(ni + c),
where ni denotes the number of nodes that node i has
already contacted.

The numerically calculated prevalence is compared be-
tween the original model (Figs. S3(a) and S3(b)) and the
extended model with c = 1 (Figs. S3(c) and S3(d)). We
replicate Figs. 2(a) and 2(b) in the main text as Figs.
S3(a) and S3(b) as reference. All nodes are assumed to
have the same activity potential ai = 0.05 (1 ≤ i ≤ N)
in (a) and (c) and ai = 0.005 (1 ≤ i ≤ N) in (b) and
(d). Figure S3 indicates that the extended model only
slightly changes the epidemic threshold.



5

STOCHASTIC m

We consider the case in which the strength of concur-
rency, m, is not constant. To analyze this case, we change
the definitions of c′1, c′2, c′3, c′4, and c′5 to

c′′1 = E[c1 − e−τ ], (S53)

c′′2 = E[mc2], (S54)

c′′3 = E[e−τ +m〈a〉(c3 − e−τ )], (S55)

c′′4 = E[mc4], (S56)

c′′5 = E[m(m− 1)〈a〉c5], (S57)

where E[·] is the expectation with respect to the distri-
bution of m. The mean degree is given by 〈k〉 = 2aE[m].
Using Eqs. (S53)–(S57) instead of c′i (1 ≤ i ≤ 5), we de-
rived the epidemic threshold in the same manner as the
derivation of Eq. (8). The phase diagrams of the epi-
demic threshold when m obeys a truncated Poisson dis-
tribution and a power-law distribution are shown in Figs.
S4(a) and S4(b), respectively. We obtain βc = 1/〈k〉
at τ = 0. We set the activity potential of all nodes
a = 〈k〉/(2E[m]) such that the epidemic threshold is the
same for all E[m] at τ = 0. We numerically calculated
mc at which τc = 0. For the power-law distribution of
m, we cannot make E[m] smaller than mc because the
distribution does not have a probability mass at m = 0
by definition. However, the phase diagrams in the case of
both the truncated Poisson and power-law distributions
of m are qualitatively similar to the case of constant m.

To gain analytical insights, we calculated the phase
diagrams when m is equal to m1 and m2 with probabil-
ities p̃ and 1 − p̃, respectively. We varied p̃ between 0
and 1. Here again, we set the activity potential of all
nodes a = 〈k〉/(2E[m]) such that the epidemic threshold
is the same for all E[m] at τ = 0. The phase diagram
(Fig. S4(c)) is again qualitatively similar to that found
in the case of constant m.

HETEROGENEOUS ACTIVITY DISTRIBUTIONS

We analyzed the phase diagram for different distribu-
tions of activity potentials to confirm the robustness of
the results shown in the main text. We consider an ex-
ponential distribution and a power-law distribution with
exponent 2.5. We numerically calculate the epidemic
threshold by solving Eq. (8) and derive τ∗ and mc from
Eqs. (S49) and (S52), respectively. The phase dia-
grams for the exponential and power-law distributions
are shown in Figs. S5(a) and S5(b), respectively. These
results are qualitatively similar to those found when all
nodes have the same activity potential value.

TEMPORAL NETWORKS COMPOSED OF
CLIQUES

We consider the case in which an activated node cre-
ates a clique (a fully-connected subgraph) with m ran-
domly chosen nodes instead of a star graph. This situa-
tion models a group conversation among m + 1 people.
We only consider the case in which all nodes have the
same activity potential a. The mean degree for a net-
work in a single time window is given by 〈k〉 = m(m+1)a.
The aggregate network is the complete graph. We impose
m2a� 1 so that cliques in the same time window do not
overlap.

As in the case of the activity-driven model, we denote
the state of a clique by {x, y, z} (x, y ∈ {S, I}, 0 ≤ z ≤
m − 1), where x and y are the states of the activated
node and another specific node, respectively, and z is
the number of infected nodes in the other m − 1 nodes.
The transition rate matrix of the SIS dynamics on this
temporal network model is given as follows. The rates
of the recovery events are given by Eqs. (S3), (S4), and
(S5). The rates of the infection events are given by

M{I,S,z},{S,S,z} = zβ, (S58)

M{S,I,z},{S,S,z} = zβ, (S59)

M{I,I,z},{S,I,z} = (z + 1)β, (S60)

M{I,I,z},{I,S,z} = (z + 1)β, (S61)

M{S,S,z+1},{S,S,z} = z(m− 1− z)β (z ≤ m− 2),

(S62)

M{I,S,z+1},{I,S,z} =(z + 1)(m− 1− z)β (z ≤ m− 2),

(S63)

M{S,I,z+1},{S,I,z} =(z + 1)(m− 1− z)β (z ≤ m− 2),

(S64)

M{I,I,z+1},{I,I,z} =(z + 2)(m− 1− z)β (z ≤ m− 2).

(S65)

We obtain ci (1 ≤ i ≤ 5) from M in the same fashion
as in the case of the activity-driven model. Because of
the symmetry inherent in a clique, we obtain c1 = c3 and
c2 = c4 = c5. Therefore, Eq. (S35) is reduced to

f(τ, βc) = 1− q − (m+ 1)r = 0. (S66)

Calculations similar to the case of the activity-driven
model lead to

τ∗ = ln
1− (1 +m)a

1− (1 +m)2a
≈ 〈k〉, (S67)

mc = 2. (S68)

The phase diagram shown in Fig. S6 is qualitatively
the same as those for the activity-driven model (Fig. 3).
Note that, in Fig. S6, we selected the activity potential
value a to force βc to be independent of m at τ = 0, i.e.,

a =
〈k〉

m(m+ 1)
. (S69)
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FIG. S4. Phase diagram of the epidemic threshold when m is stochastic; m obeys (a) a truncated Poisson distribution
(0 ≤ m ≤ mmax) and (b) a power-law distribution with exponent 3 (mmin ≤ m ≤ mmax), and (c) a bimodal distribution in
which m takes m1 and m2 with probabilities p̃ and 1− p̃, respectively. In (a) and (b), we set mmax = 11. In (a), we truncated
a Poisson distribution with varying the mean between 0.01 and 8 to modulate E[m]. In (b), We vary mmin between 1 to 9. In
(c), we set (m1,m2) = (10, 1) and varied p̃ to modulate E[m]. We set 〈k〉 = 0.1. The dashed line represents τc. In the gray
regions, βc > 100.
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FIG. S5. Phase diagram of the epidemic threshold when the
activity potential obeys (a) an exponential distribution with
a rate parameter λ (0 ≤ ai ≤ 0.9) and (b) a power-law dis-
tribution with exponent 2.5 (ε ≤ ai ≤ 0.9). We set 〈k〉 = 0.1
at m = 1 and adjust the value of λ and ε such that βc takes
the same value for all m at τ = 0. The solid and dashed
lines represent τ∗ and τc, respectively. In the gray regions,
βc > 100.
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FIG. S6. Phase diagram of the epidemic threshold for tempo-
ral networks composed of cliques. The solid and dashed lines
represent τ∗ (Eq. (S67)) and τc, respectively. All nodes are as-
sumed to have the same activity potential given by Eq. (S69).
We set 〈k〉 = 0.1.

Although Eq. (S67) coincides with the expression of τ∗
for the activity-driven model (Eq. (10)), τ∗ as a function
of m is different between the activity-driven model (solid
line in Fig. 3(a)) and the present clique network model
(solid line in Fig. S6). This is because the values of a are
different between the two cases when m ≥ 2.

EMPIRICAL ACTIVITY DISTRIBUTIONS

The epidemic threshold and prevalence when F (a) is
constructed from empirical contact data at a workplace,
obtained from the SocioPatterns project [8], are shown
in Figs. S7(a) and S7(b) for m = 1 and m = 10, re-
spectively. The results for F (a) constructed from email
communication data at a research institution, obtained
from the Stanford Network Analysis Platform [9], are
shown in Figs. S7(c) and S7(d) for m = 1 and m = 10,
respectively. These results are qualitatively similar to
those shown in Fig. 2.

[1] L. Speidel, K. Klemm, V. M. Egúıluz, and N. Masuda,
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FIG. S7. Results for activity potentials derived from empiri-
cal data. The epidemic threshold and numerically simulated
prevalence are shown for m = 1 ((a) and (c)) and m = 10
((b) and (d)). In (a) and (b), the activity potential is con-
structed from contact data obtained from the SocioPatterns
project [8]. This data set contains contacts between pairs of
N = 92 individuals measured every 20 seconds. In (c) and
(d), the activity potential is constructed from email communi-
cation data at a research institution, obtained from the Stan-
ford Network Analysis Platform [9]. Although the original
edges are directed, we treat them as undirected. We assume
that each email exchange event corresponds to a one-minute
contact. We calculate the degree of each node per minute
averaged over time, denoted by 〈ki〉, and define the activity
potential as ai = [〈ki〉 − 〈k〉/2] /m. In (c) and (d), we used
N = 439 individuals satisfying ai > 0 (some individuals ex-
changed few emails such that ai < 0). We set ∆t = 0.001.
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