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Recently increased accessibility of large-scale digital records enables one to monitor human activities such
as the interevent time distributions between two consecutive visits to a web portal by a single user, two
consecutive emails sent out by a user, two consecutive library loans made by a single individual, etc. Inter-
estingly, those distributions exhibit a universal behavior, D�����−�, where � is the interevent time, and �
�1 or 3 /2. The universal behaviors have been modeled via the waiting-time distribution of a task in the queue
operating based on priority; the waiting time follows a power-law distribution Pw�����−� with either �=1 or
3 /2 depending on the detail of queuing dynamics. In these models, the number of incoming tasks in a unit time
interval has been assumed to follow a Poisson-type distribution. For an email system, however, the number of
emails delivered to a mail box in a unit time we measured follows a power-law distribution with general
exponent �. For this case, we obtain analytically the exponent �, which is not necessarily 1 or 3 /2 and takes
nonuniversal values depending on �. We develop the generating function formalism to obtain the exponent �,
which is distinct from the continuous time approximation used in the previous studies.
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I. INTRODUCTION

In the digital era, human activities can be easily moni-
tored and quantified by analyzing digital records such as the
dates of sending or replying to emails, and financial transac-
tions. Interestingly, human activities generate emerging pat-
terns: the interevent time distribution of human activities fol-
lows a power law, and its exponent is either 1 or 3 /2 in many
cases �1–5�. Such a bursty nature of human dynamics has
been understood to be a consequence of queuing processes
driven by human decision making. Barabási introduced a
queuing model operating in the priority-based protocol �1�.
At each time step, a task arrives at such a queue and is
assigned a priority xi chosen randomly from a distribution
��x�. Then, with probability p, the task with the highest pri-
ority is selected for execution and removed from the list.
With probability 1− p, a task is randomly selected irrespec-
tive of its priority and is executed. This model was success-
ful in analytically reproducing the empirical result �1–3�: the
waiting time of a task in the queue before being executed,
which is denoted by �, follows a power-law distribution
Pw�����−1. The result is independent of distribution ��x�.
The power law Pw�����−3/2 is reproduced by allowing the
queue length to vary in time �1,3�.

To analyze both fixed-length and flexible-length queues,
the Barabási’s model was extended as follows. In each time
step, a task arrives with probability �, and the task with the
highest priority in the queue list is executed with probability
�. Operation of this queue system is schematically shown in
Fig. 1�a�. Since the dynamics of the queue is stochastic if
0	�	1 or 0	�	1, the queue length generally changes in
time. This model is a type of the M /G /1 queuing system
with a priority selection rule proposed in the seminal work of
Cobham in 1954 �6�. This model was analytically studied
recently. The waiting-time distribution of a task in the queue
changes depending on � and �. �i� When �=�=1, the num-
ber of tasks in the queue is fixed, and the waiting time of

tasks obeys Pw�����−2 �7�. �ii� When �=�	1, Pw���
��−3/2 �8�. �iii� When �	�	1, Pw�����−3/2e−�/�0 for �

�0 and Pw�����−5/2e−�/�0 for ���0, where the characteris-
tic time scales as �0=1 / ���−���2 �8�. �iv� When �	�	1,
tasks with priority x	 ��−�� /� wait in the queue forever
without being executed. Tasks with priority x� ��−�� /� are
executed with the waiting time � following Pw�����−3/2 �8�.

Previous studies focused on the case in which incoming
tasks are independent of each other and delivered to the
queue at a constant rate. Thus, the number of incoming tasks
in a unit time follows the Poisson distribution. This is the
case observed in, for example, the number of requests for
wireless phone calls arriving at a cell station in a unit time
�see inset of Fig. 2�. However, we observe that the number of
emails received by a single user in a unit time is heteroge-
neous and follows a power-law distribution �see Fig. 2�.
Time intervals between consecutive tasks arriving at a server
computer �10–13� and between a user’s hypertext markup
language �HTML� requests �5�, which are closely related to
the number of incoming tasks per unit time, also show simi-
lar patterns. The origin of such nonuniform numbers of in-
coming tasks is not known yet, but may be consequences of
multiple correspondences with multiple people or self-
similar patterns in the number of data packets arriving at a
given router �14�. Such bursty arrivals of tasks may signifi-
cantly change the behavior of priority queue systems. For
example, a more skewed distribution of the number of in-
coming tasks per unit time may result in a more skewed
waiting-time distribution of a task Pw���, as briefly suggested
in �12�. In this paper, we study the waiting-time distribution
of a task in the queue for the case of heterogeneous numbers
of incoming tasks. We find that the universal power-law ex-
ponent �=3 /2 for Pw�����−� occurs as a limited case and
obtain other values of � depending on the power-law expo-
nent of the distribution of the number of incoming tasks.
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II. MODEL

We study the queue model defined as follows: in each
discrete time step, n tasks are delivered to the queue, where
n is distributed according to a power law �n=�n−� /
��� �n
�0�, �0=1−�, where 0���1 and 
����	n�=1

� n�−� is the
Riemann 
 function. Each task is assigned a priority x uni-
formly distributed on �0,1�. At the same time, the task with
the highest priority in a queue is executed with probability �
�0���1�. Operation of this queue system is schematically
depicted in Figs. 1�b� and 1�c�. The queue length is un-
bounded so that the queue accommodates all incoming tasks.
This model generalizes the model introduced by Grinstein
and Linsker �GL� �8�, which corresponds to �0=1−�, �1
=�, and �n=0 for n�2 in our model.

We will obtain the waiting-time distribution Pw��� for a
task in the queue. To this end, we start with the probability
that there are m tasks with priority larger than or equal to x in
the queue at time t, which is denoted by Qx�m , t�. We denote

the queue-length distribution in the steady state by Q̃x�m�
=limt→� Qx�m , t�. Note that the steady state exists only under
a certain condition, as discussed later. We define Gx�m ,�� to
be the probability that a given task with priority x arriving in
the queue at time t= t0 is executed at time t= t0+�. When the
task arrives in the steady state, there are already m tasks in
the queue with priority larger than or equal to x, where m is

distributed according to Q̃x�m�. All of these m tasks are ex-
ecuted before the given task is executed. Then, the waiting-
time distribution is obtained via the following formula �8�:

Pw��� = 	
m=0

� 

0

1

dxQ̃x�m�Gx�m,�� , �1�

where Gx�m ,�� is equivalent to the first passage probability
that a random walker starting from position m�0 arrives at
the origin at time � for the first time. For a constant rate of

incoming tasks, Q̃x�m�, Gx�m ,��, and Pw��� can be obtained
explicitly �8�. However, due to the complexity of our prob-

lem, we obtain them implicitly in terms of the generating
functions. We define the generating function

Pw�s� � 	
�=1

�

Pw���s�, �2�

where 0	s	1. Then,

Pw�s� = 	
m=0

� 

0

1

dxQ̃x�m�Gx�m,s� , �3�

where Gx�m ,s��	�Gx�m ,��s�. Because the number of tasks
in the queue decreases at most one per unit time, we obtain
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FIG. 1. �Color online� Schematic representation of queueing protocols. �a� A queue system proposed by Grinstein and Linsker, in which
at most one task �filled circle� arrives in the system per time step. �b� The queue system we consider in this paper, in which input tasks �filled
circles� can be bursty. �c� Operation of the queue system shown in �b�: At time t0, there are m tasks �black circles� with priority �x in the
queue. At time t0+1, n tasks �black and gray circles� arrive in the queue with probability �n. Among them, n− i tasks �black, not gray, circles�
have priority �x. This event occurs with probability � n

n−i ��1−x�n−ixi, where 0� i�n. The task with the largest priority is executed with
probability �. No task is executed with probability 1−�. At time t0+�, the queue does not contain any tasks with priority �x for the first
time.
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FIG. 2. �Color online� Distributions of the number of incoming
tasks. The main panel shows the number of tasks delivered to an
email box of an anonymous user per unit time �9�, which follows a
power-law distribution with slope −1.5. Different lines correspond
to different bin sizes, namely, 500 ���, 800 ���, and 1000 ���
seconds. Note that the slope −1.5 is not universal. It depends on
users and can be as small as −3. We chose a user with the largest
dataset. �Inset� The number of wireless phone calls arriving at a cell
station in 10 seconds for the peak time �i.e., 12:00–20:00� ��� and
for the entire day ���. Both data fit well to the Poisson distribution
�black solid line�, which decays even faster than the power law with
exponent −6 �dotted line�.
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Gx�m,t� = 	
�

Gx�m − 1,t − ��fx��� , �4�

where fx�t��Gx�1, t�. Equation �4� is expressed in terms of
generating functions as

Gx�m,s� = Gx�m − 1,s�Fx�s� , �5�

where Fx�s��	t=1
� fx�t�st. Applying Eq. �5� repeatedly, we

obtain

Gx�m,s� = Fx
m�s� . �6�

Then, Eq. �3� is written as

Pw�s� = 	
m=0

� 

0

1

dxQ̃x�m�Fx
m�s� = 


0

1

dxQ̃x„Fx�s�… , �7�

where Q̃x�z��	m=0Q̃x�m�zm.

Once we derive Q̃x�z� and Fx�s� explicitly, we obtain the
waiting-time distribution of a task in the queue, namely,
Pw���. We will show that the waiting time exhibits a power-
law behavior Pw�����−�, where the values of � are shown
in Table I. The analytic solutions are confirmed numerically
in Fig. 3. Using our generating function formalism, we can
also reproduce the results derived in Ref. �8�, as shown in the
Appendix.

III. QUEUE-LENGTH DISTRIBUTION

In this section, we calculate the queue-length distribution

in the steady state by using the generating function Q̃x�z�.
The master equation for Qx�m , t� is given by

Qx�m,t + 1� = �	
j=0

�

� jx
jQx�m + 1,t� �8�

+ 	
i=0

m

�1 − ��	
j=i

�

� j� j

i
�

��1 − x�ixj−iQx�m − i,t� �9�

+ 	
i=0

m

� 	
j=i+1

�

� j� j

i + 1
�

��1 − x�i+1xj−i−1Qx�m − i,t� �10�

� 	
i=−1

m

pm−i→mQx�m − i,t�, �m � 1� . �11�

In the above equation, the three terms in the right-hand side
�RHS� correspond to different types of events that occur in a
unit time. The first term �8� represents the case in which j
�j=0,1 , . . . � tasks arrive in the queue with probability � j, the
priorities of all j tasks are smaller than x, and one task is
executed with probability �. The second term �9� represents
the case in which j �j=0,1 , . . . � tasks arrive in the queue
with probability � j, i tasks out of the j tasks have priorities
larger than or equal to x, and no task is executed with prob-
ability 1−�. The third term �10� represents the case in which
j �j=0,1 , . . . � tasks arrive in the queue with probability � j,
i+1 tasks out of the j tasks have priorities larger than or
equal to x, and one task is executed with probability �. For
later discussion, we denote by pm−i→m in Eq. �11� the transi-
tion probability of the random walk from position m− i to
position m in a unit time. The master equation at the bound-
ary is given by

Qx�0,t + 1� = �	
j=0

�

� jx
jQx�1,t� + 
�1 − ��	

j=0

�

� jx
j

+ �	
j=1

�

� j j�1 − x�xj−1 + �	
j=0

�

� jx
j�Qx�0,t�

� p1→0Qx�1,t� + p0→0Qx�0,t� . �12�

TABLE I. Power-law exponent � of the waiting-time distribu-
tion Pw�����−�.
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FIG. 3. �Color online� The waiting-time distribution Pw�t�. �a� The case �n��	�. Given �=0.3 and �=1.0, shown are numerically
obtained Pw��� for �=2.5 ���, 3.0 ���, 3.5 ���, and 4.0 ���, yielding to �n���0.58, 0.41, 0.36, and 0.33, respectively. Solid lines indicate
Pw�����−��−1�. �b� The case �n���� with 2	��3. Given �=0.5 and �=0.5, shown are numerically obtained Pw��� for �=2.1 ���, 2.5
���, 2.8 ���, and 3.0 ���, yielding �n���3.39, 0.97, 0.75, and 0.68, respectively. Solid lines indicate Pw�����−�2�−3�/��−1�. �c� The case
�n���� with ��3. Given �=0.5 and �=0.3, shown are numerically obtained Pw��� for �=3.3 ���, 3.8 ���, 4.0 ���, and 4.5 ���, yielding
�n���0.62, 0.57, 0.56, and 0.53, respectively. The dotted line is a guideline with slope −1.4, close to the theoretical value −1.5.
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Based on Eqs. �8�–�12�, we calculate the generating func-

tion Q̃x�z� for the steady-state queue-length distribution

Q̃x�m�� limt→� Qx�m , t�. Specifically, the generating func-

tion of Eq. �8� is equal to ���x��Q̃x�z�− Q̃x�0�� /z in the
steady state, where ��z��	 j=0

� � jz
j. The generating function

of Eq. �9� is equal to �1−��Q̃x�z����1−x�z+x�. The gener-

ating function of Eq. �10� is equal to �Q̃x�z�����1−x�z+x�
−��x��. The generating function of Q̃x�0� in Eq. �12� is equal

to ���x�Q̃x�0�. Combining all these terms, we obtain

Q̃x�z� =
�Q̃x�0��z − 1���x�

z − �� + z − �z����1 − x�z + x�
. �13�

To eliminate Q̃x�0� from Eq. �13�, we exploit the condition

Q̃x�1�=1. However, both the denominator and the numerator
of Eq. �13� converge to zero as z→1. Thus, we apply the
L’Hospital rule to Eq. �13� to derive

Q̃x�0� = �� − �1 − x��n���/„���x�… , �14�

where �n���	n=0
� n�n. Plugging Eq. �14� into Eq. �13� yields

Q̃x�z� =
�� − �n���1 − x���z − 1�

z − �� + z − �z����1 − x�z + x�
. �15�

For the steady state to exist, the incoming rate of the task
with larger than or equal to x �i.e., �n���1−x�� must be
smaller than the execution rate � �1,8�; A1��− �n���1−x�
�0 is required. In addition, �n�� must be finite, which is
equivalent to the condition ��2.

The mean queue length denoted by �m�x��Q̃ is derived as

�m�x��Q̃ = � �Q̃x�z�
�z

�
z=1

=
2�1 − ���n���1 − x� + ��n2�� − �n����1 − x�2

2A1
.

�16�

Equation �16� implies that �m�x��Q̃ diverges when �n2�� does,
that is, when ��3. When ��3, the queue length is finite for
x=0 if and only if �� �n�� and diverges as 1 / ��− �n��� as
�n�� approaches � from below, which extends the results in
�8�. As x→0 and �n��→�, �m�x��Q̃ diverges as 1 /x, which is
also consistent with the previous result �8�.

To calculate the asymptotic behavior of the steady-state

queue-length distribution Q̃x�m�, we assume �� �n���1−x�
and ��2, for which the steady state exists. When 2	�
�3, ��z� is expanded near z→1 as follows �15�:

��z� = 1 − �n���1 − z� + c��1 − z��−1 + o„�1 − z��−1
… ,

�17�

where c� is a constant. Inserting Eq. �17� into Eq. �15� leads
to

Q̃x�z� = 1 −
c��1 − x��−1�1 − z��−2

A1
+ o„�1 − z��−2

… . �18�

For 3	��4, we obtain

��z� = 1 − �n���1 − z� +
�n2�� − �n��

2
�1 − z�2 − c��1 − z��−1

+ o„�1 − z��−1
… , �19�

which leads to

Q̃x�z� = 1 + �m�x��Q̃�z − 1� +
c��1 − x��−1

A1
�1 − z��−2

+ o„�1 − z��−2
… . �20�

Similar expansions hold true for ��4. By applying the
Tauberian theorem �15� to Eqs. �18� and �20�, we obtain

Q̃x�m� �
1

m�−1 �m → �� �21�

for ��2. Equation �21� is consistent with the result under
the first-in-first-out �FIFO� protocol �16�. This is because,
when �� �n���1−x�, tasks are executed upon its arrival in
the steady state so that the priority-based protocol can be
regarded as the FIFO-based one.

IV. FIRST-PASSAGE PROBABILITY

In this section, we derive Fx�s�=	t=1
� fx�t�st

=	t=1
� Gx�1, t�st. Recall that Gx�m , t� is the probability that a

given task with priority x is executed at time t after its ar-
rival, provided that there are m tasks in the queue with pri-
ority larger than or equal to x when this task arrives. This
quantity can be interpreted as the first passage probability
that a random walker on a half line starts from position m
and arrives at the origin at time t for the first time. The
probability that the random walker moves from i to j in a
unit time is given by pi→j �see Eq. �11��.

The generator of the one-step transition of the random
walk before reaching the origin is represented by

P�z� � 	
i=−1

�

pm→m+iz
i = �1 − � +

�

z
����1 − x�z + x� .

�22�

Note that the RHS of Eq. �22� is independent of m because
the transition probability is homogeneous in space.

The amount of a single jump that the random walker
makes to the right is unbounded, because it is equal to the
number of incoming tasks with priority larger than or equal
to x. However, the amount of a jump to the left is at most
one, which yields a useful relation,

Gx�i,s� = Fx�s�i. �23�

Using Eqs. �22� and �23�, and the recursion relation
�17,18�,

fx�t� = p1→0 + p1→1Gx�1,t − 1� + p1→2Gx�2,t − 1� + ¯ ,

�24�

we obtain the following self-consistent equation for the gen-
erating function:
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Fx�s� = s	
i=0

�

p1→iGx�i,s� = s	
i=0

�

p1→iFx�s�i = sFx�s�P„Fx�s�…

= s��1 − ��Fx�s� + �����1 − x�Fx�s� + x� . �25�

The first s in the RHS comes from the unit time spent by a
single transition starting from m=1. After this transition, the
generating function of the number of tasks with priority
larger than or equal to x in the queue is zP�z�. Since each
such task incurs an execution time distributed according to
�fx�t��, we replace z of zP�z� by Fx�s� to obtain Eq. �25�.

We evaluate Fx�s� in the limit s→1 using Eq. �25�. To
guarantee that the task with priority x is eventually executed,
Fx�s=1�=1 has to be satisfied. To check if this condition is
fulfilled, we put s=1 in Eq. �25� to obtain

Fx�1� = s��1 − ��Fx�1� + �����1 − x�Fx�1� + x� . �26�

The left-hand side �LHS� and the RHS of Eq. �26� are plotted
in Fig. 4 as functions of Fx�1�, where Fx�1� is regarded as a
variable for the sake of this analysis. Note that the RHS of
Eq. �26� is positive at Fx�1�=0. Figure 4 implies that Eq.
�26� has the unique solution Fx�1�=1 if and only if the slope
of the RHS of Eq. �26� at Fx�1�=1 is less than or equal to
unity, that is,

�

�Fx�1�
��1 − ��Fx�1� + ������1 − x�Fx�1� + x��Fx�1�=1 � 1.

�27�

Equation �27� is equivalent to A1�0, which is what we al-
ready assumed.

In the following, we obtain the solution of the self-
consistent equation �25� by assuming that fx�t� follows a
power law.

Case (i): �� �n��. In this case, A1�0 holds for all x.
When 2	��3, combining Eqs. �17� and �25� yields

Fx�s� = 1 +
1

A1
�s − 1� +

c��1 − x��−1

A1
� �1 − s��−1 + o„�1 − s��−1

… .

�28�

When 3	��4, combining Eqs. �19� and �25� yields

Fx�s� = 1 +
1

A1
�s − 1� +

A1 − A1
2 + A2

A1
3 �s − 1�2

−
c��1 − x��−1

A1
� �1 − s��−1 + o„�1 − s��−1

… , �29�

where A2���n2��− �n����1−x�2 /2+ �1−���n���1−x��0.
Note that the coefficient of �1−s�2 is positive. In a similar
manner, we can show for ��4 that the leading singular term
of Fx�s� is equal to �−1����−1c��1−x��−1�1−s��−1 /A1

�, where
���=min�i ; i�� , i�Z�. Thus, we obtain fx�t�� t−� with �
=� for ��2 using the Tauberian theorem �15�.

Case (ii): �= �n��. Because A1=0 for x=0, we cannot
apply the results obtained for case �i�. For example, 1 /A1
=1 / ��n��x� in the coefficient of �s−1� in Eq. �28� diverges as
x→0, implying that the exponent � is smaller than 2 near
x=0. Actually the long-time behavior of fx�t� is dominated
by the tasks whose priority is near x=0 �8�. Thus, we assume

Fx�s� = 1 − c��1 − s��−1 + o„�1 − s��−1
… �30�

with 1	��2.
When 2	��3, the RHS of Eq. �25� is written as

s��1 − ��Fx�s� + �����1 − x�Fx�s� + x�

= sFx�s� + �s�1 − Fx�s�� + s��n���1 − x��Fx�s� − 1� + c��1

− x��−1�1 − Fx�s����−1� + ¯ � . �31�

Plugging Eq. �30� into the LHS and RHS of Eq. �25� leads to

�1 − s��1 − c��1 − s��−1 + ¯ �

= �n��xc��1 − s��−1 + c��1 − x��−1c�
�−1�1 − s���−1���−1�

+ ¯ . �32�

If �n��x� �1−s���−2�/��−1�, the first term of the RHS of Eq.
�32� is much larger than the second term as s→1 so that �
=2 and c�=1 / ��n��x�. Conversely, if �n��x
 �1−s���−2�/��−1�,
the second term dominates the first term so that �=1
+1 / ��−1� and c�=c�

−1/��−1� / �1−x��c�
−1/��−1�.

When 3	�	4, as in the case of 2	��3, Eqs. �19�,
�25�, and �30�, with an appropriate assumption of 1	��2,
yield

�1 − s� + o�1 − s� = �n��xc��1 − s��−1 + A2c�
2�1 − s�2��−1�

− c��1 − x��−1c�
�−1�1 − s���−1���−1� + ¯ .

�33�

If �n��x��A2�1−s�, the first term in the RHS of Eq. �33� is
much larger than the second term. Then �=2 and c�

=1 / ��n��x�. Conversely, if �n��x
�A2�1−s�, the second
term is much larger than the first term so that �=3 /2 and
c�=1 /�A2. The third term is always much smaller than the
second term as s→1.

Case (iii): �	 �n��. The task in the queue accumulates at
rate �n��−�. In this case, only the tasks with priority x
�xM ���n��−�� / �n�� are executed, and the analysis can be
ascribed to case �ii� �8�. Distributions of the priority of tasks
in the queue in the steady state are shown in Fig. 5 for some
values of �n�� and �.

1

1

0

LHS

RHS

FIG. 4. �Color online� Schematic representation of the LHS and
the RHS of Eq. �26� as functions of Fx�1�.

PRIORITY QUEUES WITH BURSTY ARRIVALS OF… PHYSICAL REVIEW E 79, 036106 �2009�

036106-5



V. WAITING-TIME DISTRIBUTION

Using Eqs. �7� and �15�, and Fx�s� we obtained for the
three cases, we calculate the waiting-time distribution as fol-
lows:

Case (i): �� �n��. The leading singular term of Q̃x(Fx�s�)
is equal to �−1����c��1−x��−1�1−s��−2 /A1

�−1. Then, we obtain

Pw�s� � �1 − s��−2, �34�

which yields Pw�����−��−1� for ��2.
Case (ii): �= �n��. In this case, we use Eq. �30� with val-

ues of � and c� depending on � and x.
For 2	�	3, we obtain

Pw�s� � 

0

�1 − s���−2�/��−1�

dx�n��xC�
−1/��−1��1 − s�1/��−1�−1

+ 

�1 − s���−2�/��−1�

1

dx + ¯ = 1 + � �n��c�
−1/��−1�

2
− 1�

��1 − s���−2�/��−1� + ¯ . �35�

Therefore, Pw�����−�2�−3�/��−1�.
For 3	�	4, we obtain

Pw�s� � 

0

�A2�1−s�/�n��

dx
�n��x

�A2�1 − s�

+ 

�A2�1−s�/�n��

1

dx + ¯ = 1 −
�A2�1 − s�

2�n��

+ ¯ .

�36�

Therefore, Pw�����−3/2. Similar calculations yield Pw���
��−3/2 for ��4.

Case (iii): �	 �n��. Since the analysis can be ascribed to
case �ii�, we obtain Pw�����−�2�−3�/��−1� for 2	��3 and
Pw�����−3/2 for ��3.

VI. DISCUSSION AND SUMMARY

The analytic results are summarized in Table I and con-
firmed numerically in Fig. 3. The power-law behavior of the

waiting-time distribution Pw�����−� can be diverse in that �
can take general values, rather than �=1 or 3 /2. Consistent
with this, the intertransaction time of a stock broker obeys
the power-law distribution with ��1.3 with an exponential
cutoff �3�.

Our results are compatible with those derived from the
continuous time approximation �8� and the fractional deriva-
tive �19�. The generating function approach that we have
developed can be useful for studying further problems. For
example, we show in the Appendix that our approach con-
sidered in the limit �, �→0 reproduces the results for the
GL model �8�. Furthermore, GL as well as we are successful
in deriving the exponential cutoff for �	� as Pw���
��−3/2e−�/�0 with �0=1 / ���−���2. However, for the model
with general distributions of the number of incoming tasks,
the explicit form of the exponential correction factor is not
obvious.

In our priority queue model, the jump distance of the
equivalent random walk is unbounded to the right, whereas it
is at most one to the left. In real queue systems, however,
more than one tasks may be executed in a unit time. There-
fore, a natural extension of our model is to allow the number
of executed tasks in a unit time to exceed one. To be specific,
in addition to the heterogeneity of the number of incoming
tasks, i.e., n tasks are incoming with probability �n�n−�in

per unit time, we can suppose that � tasks are executed with
probability ����−�out. Our numerical results for Pw��� seem
to fit the formulas shown in Table I, with the exponent �
replaced by the minimum of �in and �out, as far as both �in
and �out are larger than 2 �not shown�. This suggests that the
dominant tail determines the behavior of the waiting-time
distribution in the priority queue system. In particular, when
the distribution of the number of executed tasks is neither
binary nor heavy-tailed �e.g., purely exponential�, which may
be true for many real queues, our results hold because �
=�in.
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APPENDIX: COMPARISON OF THE GRINSTEIN-
LINSKER SOLUTION AND THE GENERATING-

FUNCTION SOLUTION

GL analyzed a priority queue model in which, in a unit
time, a new task arrives with probability � and the task with
the highest priority in the queue is executed with probability
�, which corresponds to �0=1−�, �1=�, and �n=0 for n
�2 in our model �8�. They obtained the solution of the
waiting-time distribution by analyzing the continuous-time
dynamics. We compare the GL solution and the solution de-
rived via the generating function in the GL limit.

1. Queue-length distribution

The generating function of the queue-length distribution
in the steady state is given in Eq. �15� in the main text. By
substituting ��z�=1−�+�z and �n��=� into Eq. �15�, we
obtain

Q̃x�z� =
� − ��1 − x�

��� − 1��1 − x�z + �1 − � + �x��
, �A1�

which leads to

Q̃x�m� =
� − ��1 − x�

�1 − � + �x�����1 − ���1 − x�
�1 − � + �x�� �m

. �A2�

Using the continuous-time approach, GL derived

Q̃x�m� =
� − ��1 − x�

�
���1 − x�

�
�m

. �A3�

Equations �A2� and �A3� are consistent in the limit � ,�
→0.

2. Waiting-time distribution and the exponential cutoff

To obtain the waiting-time distribution of a task, we use
the following theorem �20–22�:

Theorem. Suppose that, for real numbers s* and F*, a
power series F�s�=	t=1

� a�t�st with nonnegative coefficients
a�1� ,a�2� , . . . satisfies the following equations �A4�–�A6�:

F�s,F� is analytic near �s,F� = �s*,F*�; �A4�

if �s� � s*, �F� � F*,

F�s,F� =
�F�s,F�

�F
= 0 if and only if �s,F� = �s*,F*�;

�A5�

�F�s*,F*�
�s

� 0,
�2F�s*,F*�

�F2 � 0. �A6�

Then,

a�t� � � s*
�F�s*,F*�

�s

2�
�2F�s*,F*�

�F2
�

1/2

t−3/2s*−t, t → � . �A7�

To apply this theorem to the GL queue model, we define

F�s,F� = s��1 − ��F + ���1 − � + ���1 − x�F + x�� − F ,

�A8�

so that F(s ,Fx�s�)=0 holds, where Fx�s�=	t=1
� fx�t�st is the

generating function of the first-passage time probability.
Then the other main condition of the theorem �see Eq. �A5��
reads

�F�s,F�
�F

= s�1 − ���1 − � + ���1 − x�F + x��

+ s��1 − ��F + ����1 − x� − 1 = 0. �A9�

The solution to Eqs. �A8� and �A9� with the minimum abso-
lute values is given by

s* =
1

1 − � − � + 2�� + �x − 2��x + 2���1 − � + �x��1 − x���1 − ��
, �A10�

F* =� ��1 − � + �x�
��1 − ���1 − x�

. �A11�

The rest of the conditions of the theorem are satisfied with
s* and F* given by Eqs. �A10� and �A11�. Equation �A7�
implies that the tail of the first-passage time probability de-
cays as f�t�� t−3/2s*−t. This asymptotic is also derived by

directly calculating Fx�s���s*−s�1/2 as s↑s* and using the
Tauberian theorem �15,23,24�.

The generating function of the waiting-time distribution
of a task is equal to that of the queue-length distribution
given by Eq. �15� with s replaced by Fx�s�. To calculate the
asymptotic of the waiting-time distribution, we erase � by
combining Eq. �15� with s replaced by Fx�s� and Eq. �18�,
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which yields

Q̃x�Fx�s�� =
A1s�1 − Fx�s��
�1 − s�Fx�s�

. �A12�

Inserting Eq. �A12� into Eq. �A8� results in

�1 − � + �x���1 − s�Q̃x
2
„Fx�s�…

+ A1��1 − � + �x + ��s − 1�Q̃x„Fx�s�… − A1
2s = 0.

�A13�

Applying the theorem �A4�–�A7� with F�Q̃x(Fx�s�) leads
to the same equation �A10�. Therefore, the waiting-time dis-
tribution has the same asymptotic as the first-passage time
probability, that is, Pw�����−3/2s*−�. This asymptotic is also
derived by solving Eq. �A13� as Pw�s���s*−s�1/2 as s↑s*.

To evaluate s*, we denote the denominator of the RHS of
Eq. �A10� by H�x�, with � and � fixed. The existence of the
exponential cutoff in the first-passage time and the waiting-
time distribution is equivalent to H�x�	1 �0� ∀ x�1�.

A straightforward calculation yields d2H /dx2	0,
limx↑1 dH /dx=−�, and that dH /dx=0 has a unique solution
x= ��−�� /�. As explained in the main text and in previous

literature �8�, the analysis of case ��� is ascribed to that of
case �=�. Therefore, we assume ��� and obtain dH /dx
	0 �0	x�1�. Then the maximum of H�x� is realized at x
=0, so that the smallest s* is equal to

s* =
1

H�0�
=

1

1 − � − � + 2�� + 2���1 − ����1 − ��
.

�A14�

When �=�, we obtain s*=1. The asymptotic of the
waiting-time distribution is Pw�����−3/2, which is consistent
with the results in �8� and coincides with our results for
��3.

When ���, we obtain s*�1 and Pw�����−3/2e−�/�0,
where �0=1 / ln s*. In the limit � ,�→0, our discrete-time
model tends to GL’s continuous-time queue dynamics. By
inserting �=����, �=����, and �=�� /�� into Eq. �A14�
and letting ��→0, we obtain Pw������−3/2e−��/�0, where
�0=1 / ���−���2. The predicted �0 agrees with the one de-
rived by GL. They concluded Pw������−3/2e−��/�0 for �
�0

and Pw������−5/2e−��/�0 for ���0. Our results only repro-
duce the asymptotic on the intermediate timescale �i.e., �

�0� because �0 diverges as �, �→0.
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