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We introduce the heterogeneous voter model (HVM), in which each agent has its own intrinsic rate to
change state, reflective of the heterogeneity of real people, and the partisan voter model (PVM), in which each
agent has an innate and fixed preference for one of two possible opinion states. For the HVM, the time until
consensus is reached is much longer than in the classic voter model. For the PVM in the mean-field limit, a
population evolves to a preference-based state, where each agent tends to be aligned with its internal prefer-
ence. For finite populations, discrete fluctuations ultimately lead to consensus being reached in a time that

scales exponentially with population size.
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The paradigmatic voter model [1] describes the evolution
toward consensus in a population of agents that possess a
discrete set of opinions. In a single update, a random voter is
picked and it adopts the opinion state of a randomly selected
neighbor. By repeated updates, a finite and initially diverse
population necessarily reaches consensus in a time that typi-
cally scales as a power law of the population size N [1,2]. In
many respects, the voter model resembles the kinetic Ising
model with zero-temperature Glauber dynamics. Because of
this connection to nonequilibrium spin systems [3] and the
utility of the voter model for interacting particle [1] and so-
cial [4] systems, the voter model is widely studied in the
physics literature (see, e.g., [5-8]). In this work, we gener-
alize the traditional voter model in two simple, but far-
reaching ways to incorporate the heterogeneity of real people
[9]:

(i) Heterogeneous voter model (HVM): each voter has an
intrinsic and distinct “flip” rate.

(ii) Partisan voter model (PVM): each voter has an innate
and fixed preference for one opinion state.

The role of heterogeneity was emphasized in classic work
by Granovetter [10], in which collective social behavior is
determined by the diversity of individual thresholds to act in
response to stimuli. In the context of the voter model, het-
erogeneity has been studied in the extreme situation where
some voters are “zealots” that never change opinion [11,12].
This attribute prevents consensus from being reached when
zealots with different opinions exist. In our HVM, the flip
rate of each agent is taken from a continuous distribution that
excludes zero. Since every voter can, in principle, change
state, a finite system necessarily reaches consensus, albeit
slowly. For the PVM, the innate voting preference of each
agent leads to a collective state in which the opinion of each
voter tends to align with its own preference. This competi-
tion between self-interest and consensus has been modeled
previously [13], and was the focus of recent social experi-
ments that attempted to elucidate the role of the preference
strength on the dynamics [14]. Here we investigate basic
properties of these two models from a statistical physics per-
spective.

Heterogeneous voter model (HVM): Each agent can be in
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one of two opinion states that we label as 0 and 1. We
first determine the exit probability E(p) that a finite
population with initial density p of 1 voters ends with 1
consensus. Because the average density p of 1 voters
is conserved for the classic voter model on regular
networks [1], the final density of 1 voters, which equals
0X[1-E(p)]+1 X E(p)=E(p), must equal the initial density
p-

To derive the exit probability for the HVM, we need to
construct an analogous conservation law. Let 7(x)=0,1 de-
note the state of a voter at node x in a social network, 7 the
state of all voters in the system, and 7" the system state
derived from 7 when only the voter at x flips. The transition
probability of a voter at node x is given by

Pln— 7]= 3 [0(x,y) + D(y.x)], (1)
7 7 yNk X,y y,X

where y are the neighbors of node x, r, is the intrinsic
flip rate of the voter at x, and k is the number of
neighbors of each node in a regular network. The factor
®(x,y)=5(x)[1-7(y)] guarantees that voters at x and y
have different opinions so that an update actually occurs. The
transition probability [Eq. (1)] corresponds to the invasion
process on a heterogeneous network [see Egs. (4) and (5) in
[8]], in which a randomly selected agent imposes its state on
a neighbor; in the complementary voter model the agent im-
ports the state of a neighbor.

The average change in 7(x) equals the difference between
the probabilities that 7(x) changes from O to 1 and from 1 to
0. Thus (A#n(x))=[1-27(x)]P[7— #,]. Using the transition
rate [Eq. (1)], it is immediate to see that the factor r, leads to
(7m(x)) not being conserved. By construction, however, the
rate-weighted density of 1 voters,

> nx)ir,

—_—, 2
E 1/r, @
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is conserved in the HVM. Thus the probability for a system
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with initial value w to reach 1 consensus equals w. As a
consequence, a tiny fraction of very stubborn 1 voters (those
with flip rates r<<1) leads to a probability of reaching 1
consensus that is arbitrarily close to one.

To determine the average consensus time (7 for a popu-
lation of N heterogeneous voters, we focus on the distribu-
tion of intrinsic rates p(r)=Ar~%, with r € (0,r,] and « in the
range [0,1) so the distribution is normalizable. For conve-
nience in comparing cases with different «, we fix the aver-
age flip rate of the entire population (r)=1. These conditions
give r,= %:—Z and A=(2—a)r® 2. Although the lower limit of
the flip rate distribution is zero, the smallest rate r_ among a
finite population of N voters is nonzero and is determined by
the extremal criterion [15]

f CArtdr=N', (3)
0

which gives r_~N~"(1-%)_As we shall see, these stubbornest
voters control the consensus time.

We take the initial condition that each voter is indepen-
dently in the 0 or the 1 state with probability % For voters on
a complete graph of N> 1 nodes, we now follow the analysis
of the closely related invasion process on heterogeneous net-
works [8]. We partition voters according to their flip rates
and denote by p, the density of 1 voters that have flip rate in
the range [r,r+Ar]. The evolution of p, is governed by a
Fokker-Planck equation whose drift velocity drives each of
the densities p, to the common value p in a convergence time
scale that is of the order of 1/r. Subsequently p evolves in
the same manner as the homogeneous voter model on the
complete graph with an effective population size
N =N(1/r). Because the consensus time of the classic voter
model on the complete graph is proportional to this effective
size, we obtain, for the HVM,

(Ty) ~ N(1/r). (4)

Heterogeneity hinders the approach to consensus because
(1/ry>1/{r). The dependence of Eq. (4) arises because a
voter with flip rate r effectively corresponds to 1/r voters
with flip rate 1. For the power-law distribution of flip rates
p(r)=Ar=¢, Eq. (4), in conjunction with r_~N-"1-9yields
(1/ry~N¥1-2)_ Thus

(T NInN «a=0, 5)
s NVI-@) o< g<1,

in agreement with simulation results (Fig. 1). Notice that the
convergence time for the stubbornest voters, 1/r_~ N"1-2),
is of the same order as the consensus time; evidently, this
subtlety does not affect our simulation results. Finally, if the
lower limit of the distribution of flip rates is strictly greater
than zero, then the mean consensus time is linear in N.

In one dimension, the HVM organizes into alternating do-
mains of like-minded voters at long times, and consensus is
reached when all the intervening (and mobile) domain walls
annihilate. This complete annihilation occurs when a single
domain wall explores on the order of N nodes. Thus consider
the motion of a single domain wall between nodes i—1 and
i—all voters to the left of i are in state 0 and all other voters
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FIG. 1. (Color online) Average consensus time (Ty) for 10*
realizations of the HVM on (a) a complete graph (CG) of N nodes
(open symbols), and (b) ring of N nodes (filled symbols), with
circles and triangles corresponding to =0 and % The solid lines
are power-law data fits, with slopes 2.03 for the CG and 2.98 for the
ring, compared to the values 2 and 3 from theory [Eq. (5) and
immediately after Eq. (8)]. The dashed lines are the exact results for
the homogeneous voter model: (a) Ty=N In 2 on the CG and (b)
Ty~ N? on the ring.

are in state 1. In a time interval dt, the probabilities that this
domain wall hops one step to the right and to the left are,
respectively,

pi=riAt, gq;=r._At. (6)

The crucial point is that hopping probabilities at adjacent
nodes are anti-correlated—if the bias at node i is to the right
(corresponding to r;>r;_;), then it is more likely that
ri. <r; and the bias at node i+1 will be to the left. More
precisely, for three consecutive rates (r;_;,r;,7:,;) With the
constraint r;>r,_;, their relative sizes may equiprobably be
SML, SLM, or MLS, where S, M, L denotes the smallest,
middle, and largest of these three rates. The latter two cases
correspond to a leftward bias between nodes i and i+1,
which thus occurs with probability 2/3.

With the hopping probabilities ¢g; and p;, the mean first-
passage time 7 for a particle to travel from =0 to i=N in the
finite interval [0,N] is known [16-18],

N-L N2 Nl

q .
=2 —+2— 2 I % (7)

k=0 Pk k=0 Pk i=k+1 j=k+1 Dj
In the Sinai problem [19], where the p; and ¢; are indepen-
dent, identically distributed random variables, 7 grows as eN
[16]. For the HVM, the anticorrelated hopping probabilities
[Eq. (6)] lead to substantial cancellations in the above prod-

uct and yields
1 N-1)N/1
r 2 r

Using our previous result for (1/r), we thus obtain
(Tyy~N*¥0=9) " which agrees well with our numerical
simulations shown in Fig. 1(b).

Partisan voter model (PVM). Without being pejorative,
define state 1 as “democrat” and state 0 as “republican.” In
the PVM, each voter has a fixed and innate preference for
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democrat or republican. Equivalently, each voter experiences
its own random field. A voter can therefore exist in one of
four states: a “‘concordant democrat” is a democratic voter in
its preferred 1 state, while “discordant democrat” is a demo-
cratic voter that happens to be in the 0 state. Complementary
definitions apply for “concordant republican” and “discor-
dant republican.”

Denote the densities of these four types of voters as D,
Dy, R, and R, respectively. The density of voters p that
happen to be in the 1 state (current democrats) is
p=D_.+R,. In a single update event, a voter in a social net-
work is randomly selected and it selects a random neighbor.
If these two voters are in the same state, nothing happens. If
the pair is in different opinion states, the initial voter changes
its state as follows:

(i) If the voter becomes aligned with its preference, the
change occurs at rate 1 +e.

(i) If the voter becomes anti-aligned with its preference,
the change occurs at rate 1—e.

Thus € quantifies the strength of the intrinsic preference,
or partisanship. If e=1, each voter becomes a zealot that
never changes opinion after aligning with its innate prefer-
ence, while e=0 recovers the classic voter model. A similar
dichotomous rate arises for catalysis on a disordered surface
[20], where surface heterogeneity controls the adsorption rate
of different reactants on the surface.

By analyzing the outcomes from all possible pairs of
opposite-opinion voters, the rate equations for the densities
D, and D, in the mean-field limit are

D.=2eD.D,+ (1 +€)D,R;~ (1 - €D,.R,,

D,=-2eD.Dy+ (1 - €)D.R,— (1 +€D,R,. 9)

The equations for R. and R, are obtained from Eq. (9) by
interchanging R— D. Note that D .+D,=R.+R,=0, which
expresses the conservation of voters of any type.

Let D and R denote the density of intrinsic democrats and
republicans, respectively. For simplicity, we specialize to the
symmetric case of D=R=l, so that the density of
democrats of any kind, concordant and discordant, is given
by DC+Dd:D=%; similarly, RC+Rd:%. Using these
relations, p:DC+%—RCE %+A. In terms of the sum
3 =D, +R, and the difference A=D_—R, in the densities of
concordant voters, Egs. (9) simplify to

A=eA-2€e3A,

S=%(l+e)—2—2eA2. (10)

For €=0 (classic voter model), A= p=0, and the average
density of voters in either opinion state is conserved.
Because S=%(1—22), the density of concordant voters is
driven to % in the final consensus state. For general
0<e<1, there are two fixed points (Fig. 2):

(i) Self-centered (S): A*=0 and E*Z%(1+6). Each voter
tends to internal concordance at the expense of consensus.
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FIG. 2. Flow diagram (schematic) in the physical portion of the
A-3, phase plane (inside square). The open circles denote the fixed
(saddle) points that correspond to consensus (C), while the filled dot
denotes the (stable) self-centered fixed point (S). The small arrows
on either side of the nullclines A=0 and 3 =0 (dashed) indicate the
local flow of A or X.

(ii) Consensus (C): A*= = 1 and 3*=7. One half of all the
voters are intrinsically concordant.
To infer the global flow in the A- plane, we determine

the nullclines A=0 and =0 [given by E:% and
2=%(1 +€)—2€A?, respectively], and study the linearized
rate equations about each fixed point. Both eigenvalues are
negative at the self-centered fixed point S, while the eigen-
values have different signs at the consensus fixed points C.
Thus if voters have innate preferences, small deviations from
the consensus fixed points will grow and the population will
be driven to the S fixed point, where each agent tends to
align with its innate preference. As the partisanship strength
€ increases, each individual is more likely to be aligned with
its innate preference, but with a concomitant lack of
consensus.

For a finite system, however, the only true fixed points of
the stochastic dynamics of the PVM are those that corre-
spond to consensus. Since the flow in the A-3, phase plane is
driven away from these fixed points, the time to reach con-
sensus should scale exponentially in the population size. We
can understand this behavior easily in one dimension be-
cause now the dynamics of single domain walls map exactly
to the motion of a particle in a random potential (the Sinai
model [19]). As illustrated in Fig. 3, strings of consecutive
democrats or republicans give rise to potential barriers that
domain walls have to surmount to annihilate each other and
allow the system to reach consensus. In a system of length N,
the mean time for a domain wall to move a distance N there-
fore scales as ¢ [16—19]. Numerical simulations of the PVM

— . <
11111:00000000000
DDRRR;RRDDDRRDDDD

FIG. 3. State of the PVM in one dimension. The letters D and R
denote the intrinsic preference of each voter, while the current state
of the voters is given the string of 0s and 1s. A single domain wall
is shown by the dashed line and the bias that it experiences is
indicated by the arrows.

010103-3



MASUDA, GIBERT, AND REDNER
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FIG. 4. (Color online) Average consensus time (7) versus num-
ber of voters N for the PVM on (a) the complete graph (open sym-
bols) and (b) a ring (filled symbols). The circles and triangles are
simulation data for 10 000 realizations with €=0.05 and 0.15, re-
spectively. The lines are guides to the eyes.

on the complete graph and on the one-dimensional periodic
lattice (Fig. 4) are consistent with this prediction. We also
checked that qualitatively similar behavior arises when the
PVM is generalized to allow for heterogeneity in the flip rate
of each voter.
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To summarize, we extended the voter model to incorpo-
rate the realistic features of heterogeneity and partisanship.
Both generalizations are characterized by a much slower ap-
proach to consensus than in the classic voter model. When
voters are partisan, their individual preferences dominate
over collectivism, and it is only by exponentially rare events
that consensus can ultimately be achieved. These models of-
fer a step toward the quantitative modeling of social phe-
nomena, such as threshold models of collectivism [10] and
social experiments on incentive-driven consensus formation
[14]. Particularly interesting behavior seems to arise when
the two opinion states are inequivalent; in this situation, par-
tisanship for the unfavorable state may prevent consensus to
the favorable state.
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