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Numerical study of a three-state host-parasite system on the square lattice
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We numerically study the phase diagram of a three-state host-parasite model on the square lattice motivated
by population biology. The model is an extension of the contact process, and the three states correspond to
an empty site, a host, and a parasite. We determine the phase diagram of the model by scaling analysis. In
agreement with previous results, three phases are identified: the phase in which both hosts and parasites are
extinct (S0), the phase in which hosts survive but parasites are extinct (S01), and the phase in which both hosts and
parasites survive (S012). We argue that both the S0–S01 and S01–S012 boundaries belong to the directed percolation
class. In this model, it has been suggested that an excessively large reproduction rate of parasites paradoxically
extinguishes hosts and parasites and results in S0. We show that this paradoxical extinction is a finite size effect;
the corresponding parameter region is likely to disappear in the limit of infinite system size.
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I. INTRODUCTION

In research fields ranging from ecology and epidemiology
to sociology, it is important to clarify the effect of the
interactions among species or phenotypes on the entire system.
Stochastic interacting particle systems, in which each site
on a graph takes either of the possible states and is flipped
according to the states of other sites, are a useful tool for
this purpose. A paradigmatic interacting particle system that
describes disease spreading is the contact process (CP; also
termed the susceptible-infected-susceptible model) [1–3].

Various interacting particle systems in complex networks
have been investigated recently [4,5]. Nevertheless, in an
ecological context, organisms of different scales can be
considered to live in a two-dimensional space, often with a
small interaction range. Therefore, it is instructive to study
models that are more complex than the CP on the Euclidean
lattice [3,6,7]. A simple extension of the CP in this direction is
a three-state spatial host-parasite (HP) model that deals with
an ecosystem comprising soil (empty sites), host species living
on soil, and pathogen species (parasites) living on hosts. Phase
transitions and oscillations in similar models have been studied
from the perspective of statistical physics [8–12].

Satō et al. [13] analyzed the HP model on a square lattice.
They showed by means of the improved-pair approximation
(i-PA) and numerical simulations that a very high reproduction
rate of parasites results in the extinction of both hosts and
parasites. This phenomenon is called parasite-driven extinction
[13,14]. An intuitive explanation for this paradoxical behavior
is that parasites replace hosts so quickly that hosts get extinct,
which eventually results in the extinction of parasites. A similar
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paradoxical behavior (i.e., a decrease in the number of a species
caused by an increase in its fertility) is observed in other
models, where a sort of rock-scissors-paper competition is
prevalent among three species [15–23]. However, the current
understanding of the phase diagram of the HP model is not
comprehensive because parasite-driven extinction cannot be
predicted by mean-field approximation and pair approximation
(PA) [24,25].

In this paper, we numerically investigate the phase diagram
of the HP model on the square lattice. In particular, we use
large lattices and investigate the effect of the system size
on parasite-driven extinction. The obtained phase diagram
is shown in Fig. 1. We argue that two transition boundaries
(solid lines in Fig. 1) belong to the directed percolation (DP)
universality class. Another transition boundary (dotted lines) is
not characterized by the DP universality class, and its location
depends on the system size. We claim that the parasite-driven
extinction phase is a finite size effect and that the phase
diagram is qualitatively the same as that obtained by the PA
rather than that obtained by the i-PA.

II. MODEL

The HP model on the square lattice Z2 is defined as a
continuous-time Markov process with state space {0,1,2}Z2

[13,14,24–26]. Each site takes one of the three states 0,1,

and 2, which represent an empty site, a host, and a parasite,
respectively. The rules for the state transition are depicted in
Fig. 2. A host and a parasite die at rates d1 and d2, respectively.
For simplicity, we set d1 = d2 = 1. The occurrence of death at
any site is independent of the states of the neighboring sites.
In contrast, reproduction of hosts and parasites depends on
the states of the neighbors. A host emerges at an empty site
i at rate λ01n1(i), where n1(i) is the number of hosts in the
neighborhood of site i. A host at site i turns into a parasite at
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FIG. 1. (Color online) Phase diagram of the HP model. The solid
blue line represents the boundary between S0 and S01 (i.e., λ01 = λc

01).
The solid red line represents the boundary between S01 and S012 and
is drawn on the basis of the data shown in Table I. Above the dashed
lines, which correspond to L = 300, 500, and 1000 from the bottom
to the top, the parasite-driven extinction occurs frequently.

rate λ12n2(i), where n2(i) denotes the number of parasites in
the neighborhood of site i. We vary the values of λ01 and λ12 in
the numerical simulations. Because parasites feed on hosts, the
HP model allows the following three phases in the stationary
state: (i) phase S0, in which hosts and parasites are extinct;
(ii) phase S01, in which hosts survive and parasites are extinct;
and (iii) phase S012, in which both hosts and parasites survive.

The HP model with λ12 = 0 is equivalent to the CP. In
the CP, each site takes either state 0 or 1, and a death event
(1 → 0) and a reproduction event (0 → 1) at site i occur at rate
d1 = 1 and λ01n1(i), respectively. In the case of the CP on the
square lattice, S0 and S01 are realized when λ01 is, respectively,
smaller and larger than λc

01 ≈ 0.4122 [1].
The phase diagram of the HP model on the square lattice has

been examined using the mean-field approximation [13]; the
PA, which accounts for pairwise state correlation [24]; and the
i-PA, which calibrates the PA to account for the aggregation
of the same species in the space [13,14]. All of the three
approximations predict the existence of the three phases of the
model. In the mean-field approximation and the PA, the system
is in S0 if λ01 is less than a critical value that is independent
of λ12. Otherwise, the system is in S01 (S012) when the value

0

2

1

d2

d1

λ01 n1

λ12 n2

host

parasite

empty

FIG. 2. Transition rules of the HP model. Solid and dashed lines
represent deaths and births, respectively. The values indicate the
transmission rates, and ni denotes the number of neighbors of a site
in state i.

of λ01 and λ12 is sufficiently small (large). In the mean-field
approximation and the PA, the boundary between S01 and
S012 is given by λ12 = λ01/(4λ01 − 1) and λ12 = (12(λ01)2 +
4λ01)/(36(λ01)2 − 4λ01 − 3), respectively [24]. In particular,
only S0 and S012 exists when λ12 → ∞ in the mean-field
approximation. In the PA, when λ12 → ∞, S0, S01, and S012

appear in this order in the PA as λ01 increases. The phase
diagram obtained from the i-PA is qualitatively distinct from
those obtained from the mean-field approximation and the PA.
When λ12 is large, the i-PA predicts S0 regardless of the value of
λ01. This result corresponds to the numerical observation that a
large reproduction rate of parasites induces extinction of hosts
and parasites [13,14]. We call this phenomenon the parasite-
driven extinction. The mean-field approximation and the PA
do not predict the existence of the parasite-driven extinction.

III. DP TRANSITION ON THE S01–S012 BOUNDARY
FOR SMALL λ12

In this section, we numerically examine the boundary
between S01 and S012 for small values of λ12 (the red solid
line in Fig. 1). We carry out Monte Carlo simulations for the
HP model on the square lattice with N = L × L sites, where
L = 300. Periodic boundary conditions are assumed. We run
500 realizations for fixed λ01 and λ12. At the beginning of each
realization, each site independently takes state 0, 1, or 2 with
equal probability. We adopt an event-driven update algorithm
in which we select one out of all the possible events to occur
with the appropriate probability for each time step. Then, we
increment the time by an appropriate amount.

First, we focus on the limit λ01 → ∞, where an empty site
adjacent to a host is instantaneously replaced by the host. A
cluster of empty sites survives only when they are surrounded
by a shell of parasites. When λ12 is small, parasites rarely form
such a shell. Then, the HP model behaves like the CP, where
empty sites and hosts in the HP model collectively correspond
to the susceptible sites (i.e., state 0) in the CP. Because many
spatial stochastic processes including the CP undergo a DP-
type phase transition [1,27–29], we expect that the HP model
also undergoes a DP-type transition from S01 to S012 as λ12

is increased to cross ≈ λc
01 ≈ 0.4122. The time courses of the

mean density of parasites 〈ρ2〉(t) are shown in Fig. 3(a) for
various values of λ12, where 〈·〉 denotes the average over all
the realizations. At λ12 = λc

12 ≈ 0.4129, we obtain

〈ρ2〉(t) ∝ t−δ. (1)

From Fig. 3(b), which shows the plotting of the local slopes
of 〈ρ2〉(t), we obtain δ ≈ log〈ρ2〉(t)/ log t ≈ 0.451, a value
indicative of the DP universality class [1]. We also derive δ

via dynamic scaling [27,28], that is, by fitting the following
scaling form:

〈ρ2〉(t) ≈ t−β/ν|| ρ̃2

(
�λ12t

1/ν|| ,
td/z

N

)
, (2)

where

�λ12 = λ12 − λc
12. (3)

The critical exponent δ is given by δ = β/ν||. The results of
the dynamic scaling with the known critical exponents for
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FIG. 3. (Color online) DP phase transition at λ01 → ∞ and λ12 ≈ λc
12. (a) Time courses of 〈ρ2〉(t) and (b) local slope δ of 〈ρ2〉(t). The

different lines from the top to the bottom correspond to λ12 = 0.4079,0.4089, . . . , and 0.4179. (c) Dynamic scaling [Eq. (2)] for the data shown
in (b).

the (2 + 1)-dimensional DP universality class β ≈ 0.583 and
ν|| ≈ 1.295 [1] are shown in Fig. 3(c). The data for different
values of λ12 collapse onto a single curve separately for
subthreshold and suprathreshold values of λ12. This result also
supports that the transition belongs to the DP universality class.

If λ01 is finite and sufficiently large, we can numerically
obtain the transition points and the critical exponents in the

same manner. On the critical line, 〈ρ2〉(t) shows a power-law
decay with t , as shown in Fig. 4(a). When λ01 � 0.68,
the dynamic scaling yields the DP critical exponents at
each examined transition point. The locations of several
points on the S01–S012 boundary are shown in Fig. 1 and
Table I.

We postpone the analysis of the case λ01 � 0.68 to Sec. VI.
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FIG. 4. (Color online) (a) Time courses of 〈ρ2〉(t) with λ01 = 10. The lines from the top to the bottom correspond to λ12 = 0.430,0.432, . . . ,
and 0.450. (b) Surviving probability of hosts P1(t) (dashed lines) and that of parasites P2(t) (solid lines) with λ01 = 10. The lines from the top
to the bottom correspond to λ12 = 5.9,6.3,6.7,7.1, and 7.5. We set L = 300 in both (a) and (b).
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TABLE I. Several points on the S01–S012 boundary.

λ01 0.509 0.543 0.591 0.651 0.680 0.942 2.000 6.000 10.000 15.000 20.000 ∞
λ12 ∞ 10.000 4.000 2.378 2.000 1.000 0.581 0.459 0.440 0.430 0.426 0.4129

IV. DEPENDENCE OF BOUNDARY BETWEEN S012

AND THE PARASITE-DRIVEN EXTINCTION
REGION ON λ12

Parasite-driven extinction may occur for large λ12 [13,14].
Figure 4(b) shows the surviving probability of hosts P1(t) and
that of parasites P2(t) for some large values of λ12 and fixed
values of λ01 = 10 and L = 300. If P1(t) approaches zero
rapidly, the parasite-driven extinction is considered to have
occurred. If the transition from S012 to the parasite-driven
extinction belongs to the DP universality class, P1(t) or
P2(t) should decay geometrically on the phase boundary and
exponentially for λ12 slightly larger than the critical value.

However, Fig. 4(b) indicates that this is not the case.
Whether extinction of hosts and parasites occurs or not is
determined at an early stage, where hosts are rapidly replaced
by parasites, resulting in a rapid decrease in the number of
hosts. If the hosts die out, the parasite-driven extinction takes
place. In contrast, if hosts survive the initial stage, which occurs
with a low probability, the hosts recover from near extinction.
In this case, hosts and parasites are likely to coexist for a long
time. The value of λ12 affects the probability that the hosts
survive rather than the rates at which the number of hosts and
parasites decay.

We state that the parasite-driven extinction is a finite size
effect. To confirm this statement, we measure the probability
of the parasite-driven extinction as a function of linear lattice
size L. Because the transient is short, as shown in Fig. 4(b), we
measure the fraction of realizations among 2000 realizations
in which both hosts and parasites are extinct at t = 100.
Figure 5(a) shows the extinction probability for a range of
values of λ12 at λ01 = 10 and L = 100, 200, 300, 500, 700,
and 1000. The extinction probability indefinitely decreases
with L. The value of λ12 that has an extinction probability
of 1/2, denoted by λ12 = λ

f

12(λ01,L), is plotted against L in

Fig. 5(b). It is observed that λ
f

12(λ01,L) ∝ ln L. Logarithmic
scaling is also observed at other values of λ01. In Fig. 1, we
show λ

f

12(λ01,L) for some values of λ01 and L (dotted lines).
The results obtained in this section indicate that the param-

eter region of parasite-driven extinction indefinitely shrinks as
L increases. This system-size dependence is distinct from the
dependence of the critical value on L in the usual phase tran-
sitions, which is convergent in the limit of infinite system size.

V. DP TRANSITION ON THE S0–S01 BOUNDARY
IN THE LIMIT λ12 → ∞

When λ12 is sufficiently large, the mean-field approxima-
tion predicts that the system transits from S0 to S012 as λ01

increases [13]. The PA predicts that the system transits from
S0 to S01 and then to S012 as λ01 increases [24]. The i-PA
predicts that the system is in S0 irrespective of the value of λ01

(see Fig. 1 in Ref. [14]). To analyze this apparent contradiction,
we carry out simulations in the limit λ12 → ∞.

Irrespective of the value of λ12, it seems that λ01 must
be larger than λc

01 for hosts to survive. Therefore, we start by
examining the case λ01 ≈ λc

01. When λ01 ≈ λc
01 and λ12 → ∞,

a host adjacent to a parasite is instantaneously invaded by the
parasite. In such a case, if we start numerical simulations on
the equal fraction of empty sites, hosts, and parasites, then
the number of hosts, if they survive at all, becomes small
at the very beginning of a run. For example, the averaged
number of hosts on the 300 × 300 square lattice decreases
from 30 000 to ≈ 60 after a short time. It may not be suitable
to measure the decay of the expected number of hosts, which
would be 〈ρ1〉(t) ∝ t−δ on the critical line; this is because such
a measurement necessitates the existence of a sufficiently large
number of hosts at the beginning of a run.

Another numerical method for estimating the transition
point and critical exponents is to measure the time courses
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FIG. 5. (a) Relationship between the extinction probability and λ12 when L = 100, 200, 300, 500, 700, and 1000 (from left to right).
(b) Dependence of λ

f

12(λ01,L) on L. We set λ01 = 10 in both (a) and (b). The number of realizations for a given combination of λ12 and L is
equal to 2000.
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FIG. 6. (Color online) Transitions at λ01 ≈ λc
01 and λ12 → ∞. (a) Time courses of 〈N1〉(t) (solid lines) and 〈N2〉(t) (dashed lines that almost

overlap each other). (b) Surviving probability of hosts P1(t). (c) Dynamic scaling [Eq. (4)] for the data shown in (a). (d) Dynamic scaling
[Eq. (5)] for the data shown in (b). The lines correspond to λ01 = 0.4082,0.4092, . . . , and 0.4182 from the bottom to the top. The number of
realizations for a given λ01 is equal to 107.

of the system starting from an almost absorbing configuration
[30]. For example, we observe the power-law behavior of the
surviving probability, the number of active sites, and the mean
spreading at the transition point, if we run the CP starting
from a single active site. Therefore, we assume that the initial
configuration of the HP model contains just one host. The other
sites are either empty or parasites with a probability of 0.5.

With this one-host configuration, the mean number of hosts
follows the power law 〈N1〉(t) ∝ t θ at λ01 ≈ λc

01, as shown by
the solid lines in Fig. 6(a). On the other hand, parasites rapidly
become extinct (dashed line). The surviving probability of
hosts also follows the approximate power law P1(t) ∝ t−δ′

in
the same parameter range [Fig. 6(b)].

At λ01 ≈ λc
01, we adopt the dynamic scaling ansatz [1]

represented by

〈N1〉(t) ≈ t θ Ñ1

(
�λ01t

1/ν|| ,
td/z

N

)
, (4)

P1(t) ≈ t−δ′
P̃1

(
�λ01t

1/ν|| ,
td/z

N

)
, (5)

where

�λ01 = λ01 − λc
01. (6)

This dynamic scaling ansatz explains the data shown in
Figs. 6(a) and 6(b), respectively. The fitting results with the DP
exponents θ ≈ 0.229 and δ′ = δ ≈ 0.451 [1] [Figs. 6(c) and
6(d)] suggest that the transition from S0 to S01 at λ01 = λc

01

and λ12 → ∞ is of the DP type. We consider that this phase
transition is independent of the value of λ12. This result
qualitatively agrees with that obtained from the PA but not
that obtained from the i-PA.

With the random initial configuration, we observe 〈N1〉(t)
and P1(t) instead of 〈ρ1〉(t) and obtain the same results as
those shown in Fig. 6. 〈N1〉(t) and P1(t) decay geometrically
at λ01 ≈ λc

01, as shown in Figs. 7(a) and 7(b), respectively. The
dynamic scaling [Eq. (4)] with the DP exponents fits 〈N1〉(t)
shown in Fig. 7(a) well [Fig. 7(c)]. On the other hand, dynamic
scaling of P1(t) [Eq. (5)] fails because the number of surviving
hosts after a short time is greater than one. To circumvent this
case, we assume that the surviving hosts are located away from
each other and grow independently on the lattice. We denote
the surviving probability of a specified host by P

single
1 (t). Then,

we approximate P1(t) as

P1(t) ≈ 1 − [
1 − P

single
1 (t)

]n
, (7)

that is,

P
single
1 (t) ≈ 1 − [1 − P1(t)]1/n, (8)

where n is the mean number of surviving hosts after a short
time. By replacing P1(t) in Eq. (5) by P

single
1 (t) and using

the DP critical exponents, we obtain a reasonable scaling, as
shown in Fig. 7(d).
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01. (b) Surviving probability of hosts P1(t). (c) Dynamic scaling [Eq. (4)]

for the data shown in (a). (d) Dynamic scaling with Eqs. (5) and (8) applied to the data shown in (b). The lines correspond to λ01 =
0.40821,0.40921, . . . , and 0.41821 from the bottom to the top. The number of realizations for a given λ01 is equal to 107.

VI. S012 PHASE IN THE LIMIT λ12 → ∞
When λ12 → ∞, either the random initial configuration or

the one-host configuration yields S0 or S01, but not S012, for any
value of λ01. This remains the case for at least up to L = 1000.
The apparent absence of S012 may be because there are initially
too many parasites. In the case of a large λ12, parasites replace
hosts in a short time, which is likely to lead to the extinction
of the parasite.

To examine the possibility of S012 at λ12 → ∞, we adopt
the one-parasite configuration, where the remaining sites are
either empty or occupied by the host with a probability of
0.5. With this initial configuration, we find that both hosts and
parasites can survive when L is large and λ01 is within a certain
range. When L � 400, neither hosts nor parasites survive.

Time courses of the number of parasites are shown in
Fig. 8 for L = 700 and three values of λ01. As λ01 increases
within this range, the basal number of parasites in a short run
increases, but the amplitude of the damped oscillation in the
number of parasites also increases. If λ01 is sufficiently large,
the amplitude of the oscillation is so large that the parasites are
likely to disappear in the first cycle of the oscillation [Fig. 8(c)],
whereas the basal number of parasites is larger than that in the
case of a smaller λ01 [e.g., Fig. 8(a)]. We remark that, for re-
lated spatial stochastic processes, sustainable oscillations [31,
32] and absorption to the unanimity state owing to the blowing
out of oscillations [33] were reported as finite size effects.

The stationary density of the parasites averaged over the
surviving runs, denoted by 〈ρ2〉surv, is shown for some large

values of L in Fig. 9(a). Here 〈.〉surv indicates the average
over realizations in which parasites survive after a transient
of length 1500. We observe that 〈ρ2〉surv is positive for λ01 �
0.509 and converges to a certain value for λ01 � 0.518. We did
not determine the transition point and the critical exponents by
a scaling argument for 〈ρ2〉surv in terms of λ01 because 〈ρ2〉surv

is too small for λ01 ≈ 0.509. To support the existence of the
S012 phase in the limit L → ∞, we measure the fraction of
surviving runs for various system sizes. As shown in Fig. 9(b),
the fraction of surviving runs increases with L for λ01 � 0.509.
This result supports the fact that S012 exists for λ01 � 0.509
in the limit L → ∞. As λ01 increases even further (i.e., λ01 �
0.524), the fraction of surviving runs decreases. The parasite-
driven extinction for a finite system size gets eminent in this
range of λ01; this parasite-driven extinction is caused by the
increasing magnitude of damped oscillations. Similar to the
results shown in Sec. IV, the parameter region for the parasite-
driven extinction depends on the system size and is likely
to disappear in the limit L → ∞. We also observed that the
results in the case of finite λ12 � 2 are qualitatively the same
as those in the case of λ12 = ∞.

Finally, we examine the S01–S012 transition line for large
λ12. In this case, we do not obtain a data collapse by the
dynamic scaling based on the relaxation of the system, as
shown in Fig. 10(a) for λ12 = 4. Therefore, we attempt the
dynamic scaling for the parasites in the manner similar to that
employed in Sec. V. Consider the neighborhood of the S01–S012

transition point for a large fixed λ12. With the one-parasite
configuration, a parasite would quickly invade hosts at an early
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stage. In this case, the growth rate of the parasite is fairly
insensitive to λ01. Therefore, the scaling argument would not
apply.

To avoid such an initial growth of parasites and obtain
a clear scaling of 〈N2〉(t), we proceed as follows. First, we
start a simulation from a mixture of independently distributed
empty sites and hosts with the equal density (i.e., 0.5 each).
After the system has approached a steady S01 state, we replace

a randomly chosen empty site with a parasite and continue the
simulation until the stationary state is reached. Figure 10(b)
shows the time course of 〈N2〉(t) for λ12 = 4 and various
values of λ01, where the single parasite is added at t = 0. Near
the transition point, λ01 ∼ 0.591, 〈N2〉(t) seems to follow a
power law. The data for different values of λ12 collapse onto
a single curve with the DP critical exponents, separately for
subthreshold and suprathreshold values of λ01 [Fig. 10(c)].
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FIG. 9. (Color online) (a) Stationary parasite density 〈ρ2〉surv averaged over the surviving runs in the limit λ12 → ∞. (b) Fraction of the
surviving runs. We set L = 500 (triangles), 600 [diamonds; only in (b)], 700 (squares), and 900 (circles). The number of realizations for a
given combination of λ01 and L is equal to 100.
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FIG. 10. (Color online) (a) Time courses of 〈N1〉(t) (dashed lines) and 〈N2〉(t) (solid lines) for the random initial configuration. The lines
from the bottom to the top correspond to λ01 = 0.58,0.582, . . . , and 0.60. The number of realizations for a given λ01 is equal to 50 000.
(b) Time courses of 〈N2〉(t) for the modified initial configuration. The lines correspond to λ01 = 0.57,0.575, . . . , and 0.615 from the bottom to
the top. The number of realizations for a given λ01 is equal to 20 000. We set λ12 = 4 and L = 300 in both (a) and (b). (c) Dynamic scaling for
the data shown in (b). As the scaling function, we use Eq. (4) with 〈N1〉(t) replaced by 〈N2〉(t).

Figure 10(c) suggests that the transition belongs to the DP
universality class.

Note that 〈N2〉(t) above the transition point saturates owing
to a finite size effect. It is difficult to determine critical
properties for large values of λ12 because we would need
increase L to perform the dynamic scaling. Nevertheless,
we believe that the S01–S012 transition belongs to the DP
universality class even for larger λ12.

VII. SUMMARY

We carried out numerical simulations for a three-state
host-parasite model on the square lattice. The obtained phase
diagram is shown in Fig. 1. Our numerical results suggest that
the S0–S01 boundary and the S01–S012 boundary are of the DP
universality class. The parasite-driven extinction occurs for
large λ01 and large λ12 in relatively small systems. However,

for a sufficiently large system, the three states coexist in the
parameter region where the parasite-driven extinction occurs
for a small system. Therefore, the parasite-driven extinction
is a finite size effect. This prediction is consistent with the
phase diagram obtained from the PA but not with phase
diagrams obtained from the mean field approximation and the
i-PA.
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